AIRTUM - XIV Corso di aggiornamento per operatori dei registri tumori

Diagnosi e terapia dei tumori del fegato

Erica Villa

UC di Gastroenterologia

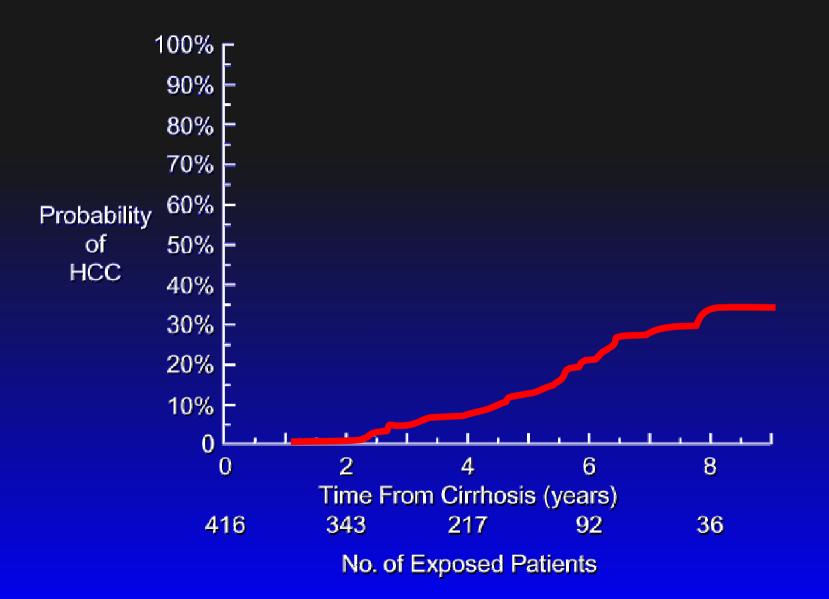
Azienda Ospedaliero-Universitaria di Modena

Modena, 8 ottobre 2014

UNIVERSITÀ DEGLI STUDI di modena e reggio emilia

Outline

Definition


- Epidemiology
- Biology
- Diagnosis
- Current Therapies
- Future of Targeted Therapy

What really is HCC?

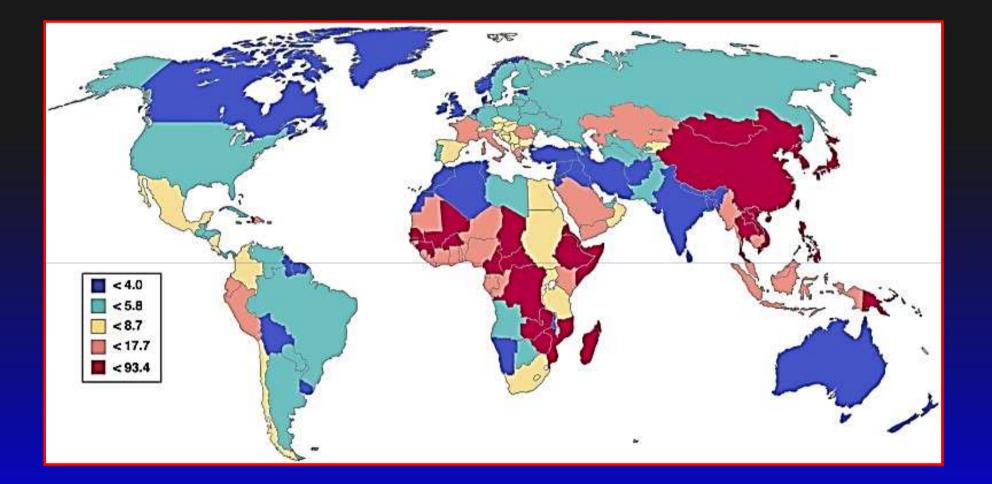
HCC is the expected complication of longstanding chronic liver disease.

If patients survive the other expected complications (bleeding, liver failure, sepsis), they will invariably develop HCC.

Progression to HCC From Cirrhosis

Degos F et al. Gut. 2000;47:131-136.

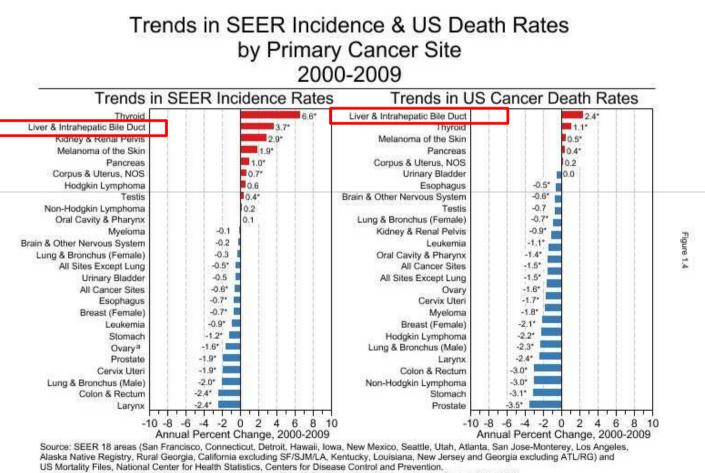
Outline


Definition

- Epidemiology
- Biology
- Diagnosis
- Current Therapies
- Future of Targeted Therapy

HCC Risk Factors

- Exposures
 - HCV, ETOH, Aflatoxin
 - -HBV
 - HBV viral load>10⁴ copies/ml, genotype C, e antigen positive
- Genetic susceptibility
 - hereditary hemochromatosis, alpha-1 antitrypsin deficiency, Wilson's disease
- Metabolic factors
 - NASH, metabolic syndrome
 - Demographics
 - Older age, male sex


Liver Cancer Mortality Worldwide

Estimated Cancer Incidence in US in 2013

Lung & bronchus Prostate Colon & rectum Pancreas Liver & intrahepatic bile duct	28% 10% 9% 6% 5%	Men 306,920	Women 273,430	26% 14% 9% 7% 5%	Lung & bronchus Breast Colon & rectum Pancreas Ovary
Leukemia	4%			4%	Leukemia
Esophagus	4%			3%	Non-Hodgkin Iymphoma
Urinary bladder	4%			3%	Uterine corpus
Non-Hodgkin Iymphoma	3%			2%	Liver & intrahepatic bile duct
Kidney & renal pelvis	3%			2%	Brain/other nervous system
All other sites	24%			25%	All other sites

HCC Incidence and Death Rates are Increasing in the US

Underlying rates are per 100,000 and age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1103).

For sex-specific cancer sites, the population was limited to the population of the appropriate sex.

* The APC is significantly different from zero (p< 05).

Ovary excludes borderline cases or histologies 8442, 8451, 8462, 8472, and 8473.

Application of the ADRESS-HCC Risk Model to Hypothetical Patients With Cirrhosis

Patient	Age	Diabetes	Race	<i>E</i> tiology	Sex	Severity	ADRESS-HCC Score	1-Year HCC Risk, %
1 ^a	1.957	0	0	0	0	0.5850	2.542	0.2
2 ^b	1.957	0	0.2058	1.246	0	0.8190	4.228	1.0
3 ^c	3.029	0	0	0.3509	0.51 14	0.9360	4.827	1.7
4 ^d	2.330	0.2135	0.2058	1.246	0.5114	1.287	5.794	4.6

Abbreviations: ADRESS, age, diabetes, race, etiology of cirrhosis, sex, and severity; HCC, hepatocellular carcinoma.

^a Patient 1 is a 42-year-old white woman with autoimmune hepatitis, no diabetes, and a Child-Turcotte-Pugh (CTP) of score of 5.

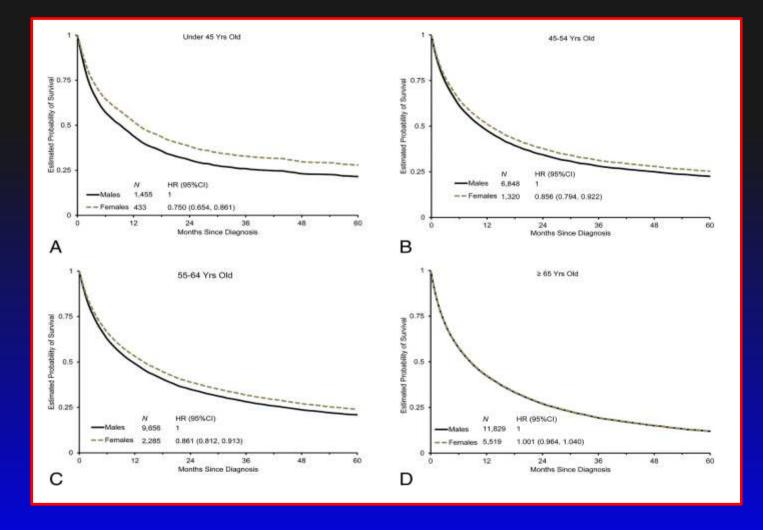
^b Patient 2 is a 42-year-old Asian woman with hepatitis C, no diabetes, and a CTP score of 7.

^c Patient 3 is a 65-year-old white man with alcohol-related cirrhosis, no diabetes, and a CTP score of 8.

^d Patient 4 is a 50-year-old Asian man with hepatitis B cirrhosis, diabetes, and a CTP score of 11.

Association Between Sex and OS on Multivariate Analysis

	Adjusted	Median		
	OS (95% CI),		HR	
		nths	(95% CI) ^a	Pa
Subjects	Male	Female		
All	10 (10-10)	11 (11-12)	0.93 (0.91-0.96)	<.001
Age group, y				
18-44	10 (9-11)	14 (12-16)	0.75 (0.65-0.86)	<.001
45-54	11 (11-12)	13 (12-15)	0.86 (0.79-0.92)	<.001
55-64	12 (11-12)	14 (13-15)	0.86 (0.81-0.91)	<.001
65-74	10 (10-11)	11 (10-12)	0.97 (0.92-1.02)	.19
≥75	8 (7-8)	7 (7-8)	1.04 (0.99-1.10)	.15
Pinteraction		<.001		
Race				
White	10 (10-10)	11 (10-11)	0.93 (0.89-0.96)	<.001
African American	8 (7-8)	9 (9-10)	0.85 (0.78-0.92)	<.001
Asian	12 (12=13)	13 (12-14)	1.00 (0.94-1.06)	.87
Hispanic	10 (10-11)	11 (10-12)	0.99 (0.92-1.07)	.79
Pinteraction		.017		
Stage				
Single lesion	26 (25-27)	29 (27-31)	0.95 (0.90-1.01)	.086
Multiple tumors	13 (13-14)	14 (13-15)	0.96 (0.90-1.03)	.24
Vascular invasion	8 (8-9)	9 (9-10)	0.91 (0.87-0.95)	<.001
Metastatic disease	4 (3-4)	4 (3-4)	0.94 (0.88-1.00)	.055
Pinteraction	ALC AND DEVELOPMENT	.036		
Treatment				
None or unknown	7 (6-7)	7 (7-7)	0.96 (0.93-0.99)	.017
Liver-directed therapy	27 (25-28)	27 (25-30)	0.99 (0.89-1.09)	.82
Surgical resection	44 (40-46)	48 (44-54)	0.87 (0.78-0.96)	.008
Liver transplantation	60 ^b	60 ^b	1.06 (0.86- 1.29)	.60
Pinteraction		.045		


Abbreviations: 95% CI, 95% confidence interval; HR, hazard ratio; OS, overall survival.

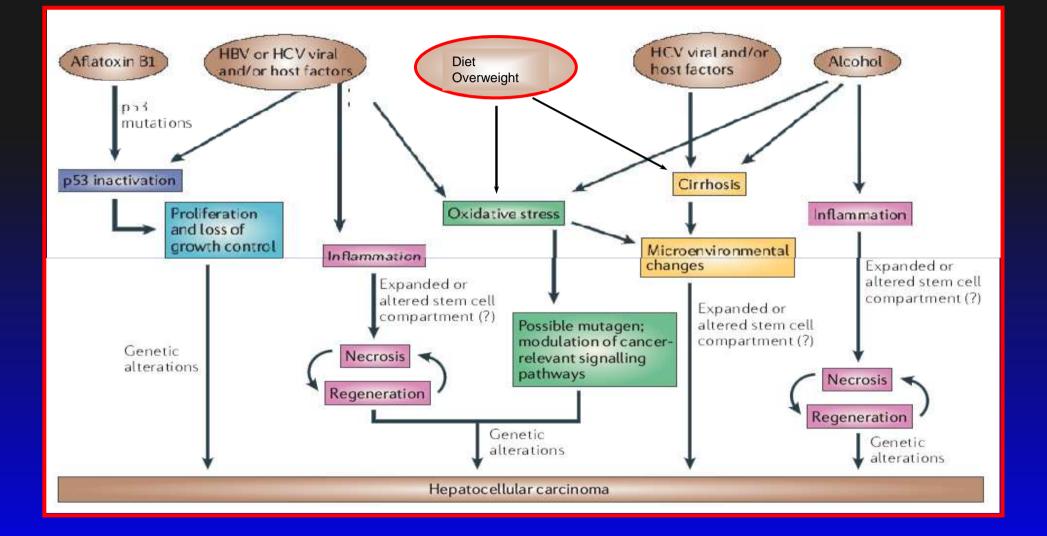
^a Men as the reference group (HR, 1).

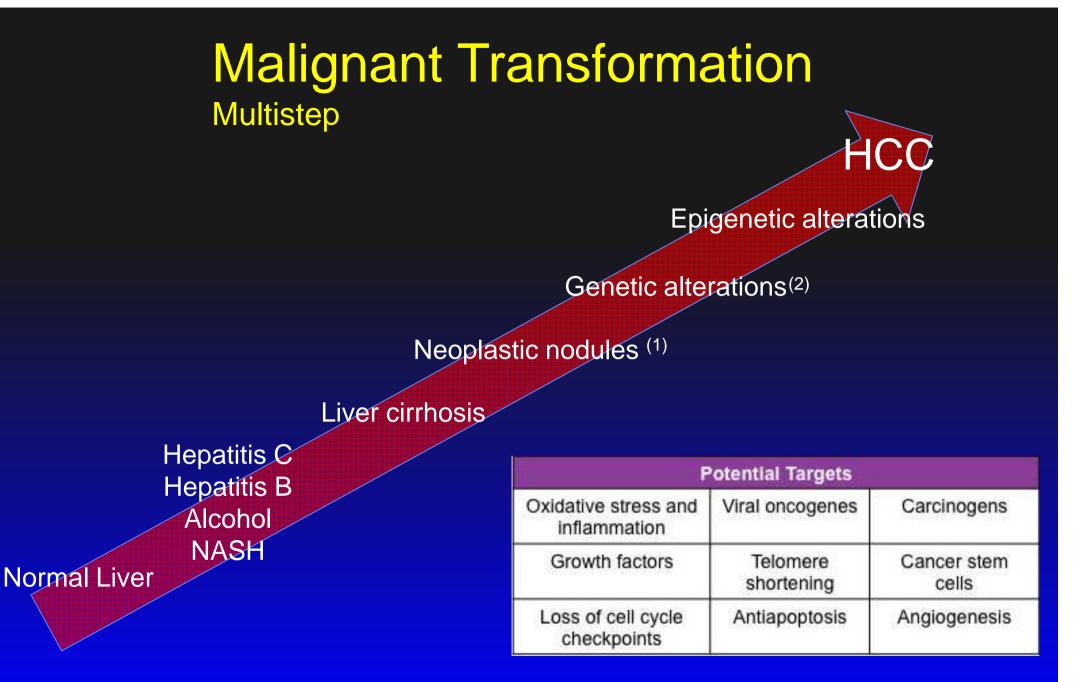
^bEstimates were not reached.

Yang et al., Cancer 2014

Impact of sex on the survival of patients with hepatocellular carcinoma: A Surveillance, Epidemiology, and End Results analysis

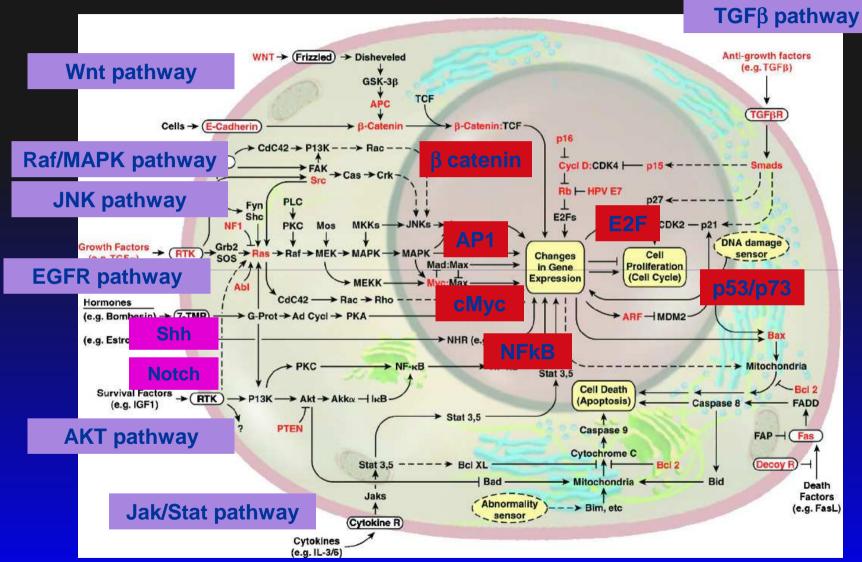
Yang et al. Cancer 2014


Impact of NAFLD


- Up to 30% of the US population has fatty liver disease: the "hepatic manifestation" of metabolic syndrome
- This can progress to inflammation, known as non-alcoholic steatohepatitis (NASH)
- NASH contributes to up to a third of HCCs in this country, and incidence is increasing
- Those with features of metabolic syndrome also have worse outcomes from several kinds of cancer

Outline

- Definition
- Epidemiology
- Biology
- Diagnosis
- Current Therapies
- Future of Targeted Therapy


Mechanisms of hepatocarcinogenesis

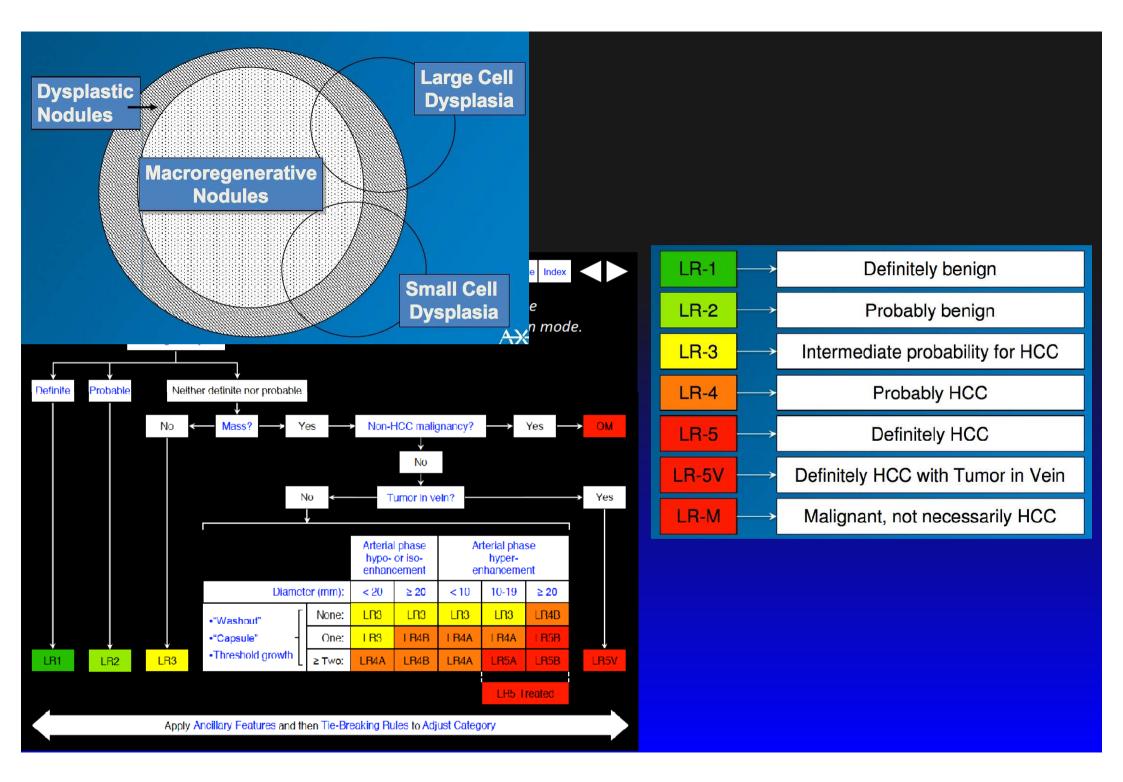
1.Tornillo L, et al. Lab Invest 2002; 2) Verslype C eta al. AASLD 2007

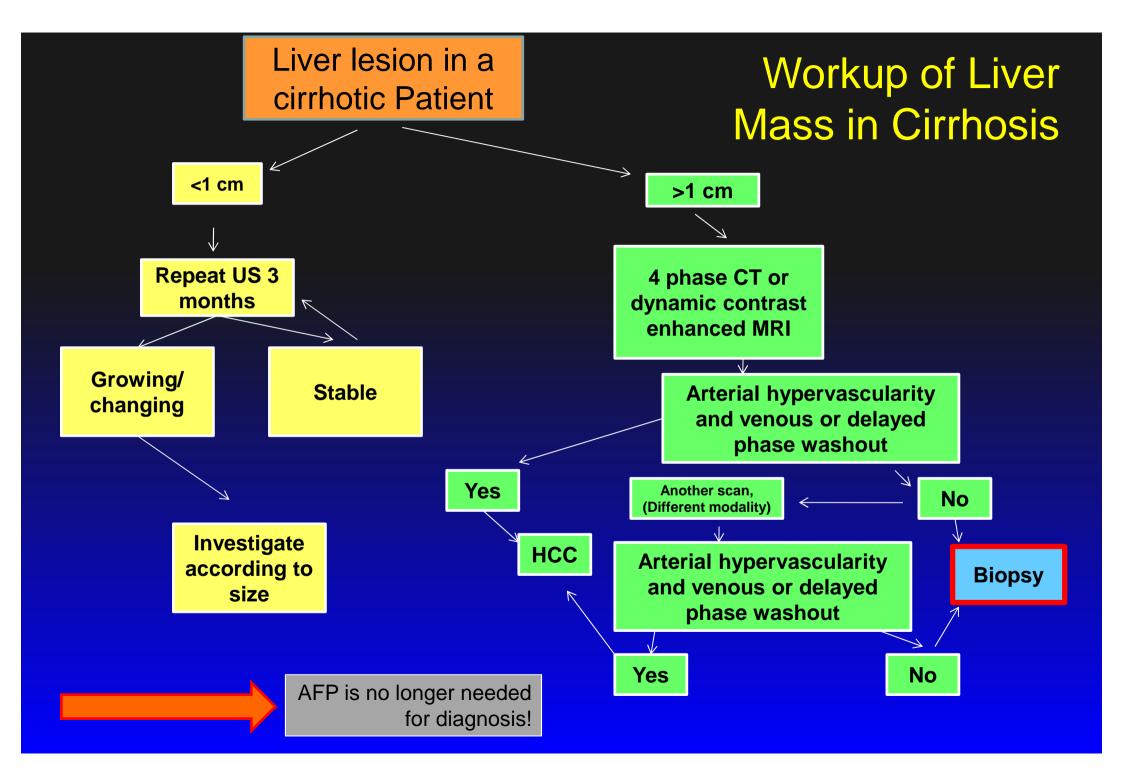
Different Therapeutic Targets in Human HCCs

HCC: Pathogenesis

Liver carcinogenesis is typically a stepwise process

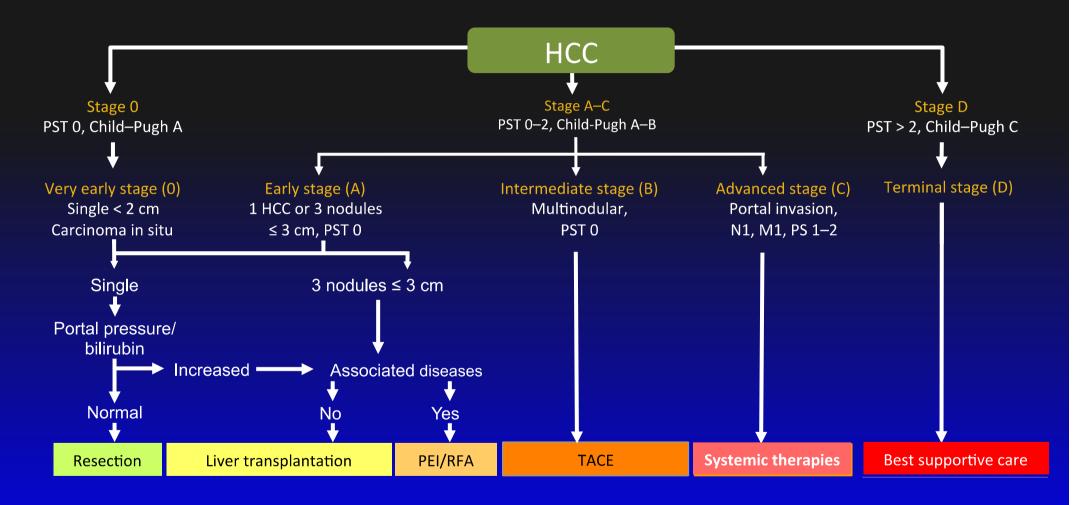
- Sequential genetic mutations
- Oncogene activation
- Tumor suppressor gene inactivation


No dominant pathways of hepatocellular carcinogenesis have yet been identified


Outline

- Definition
- Epidemiology
- Biology
- Diagnosis
- Current Therapies
- Future of Targeted Therapy

Patient workup: ⇒Imaging: CT, MR ⇒Biopsy ⇒Angiography



Outline

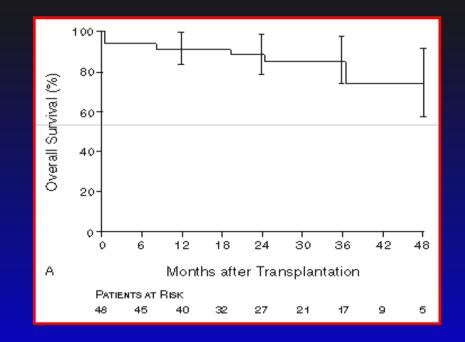
- Definition
- Epidemiology
- Biology
- Diagnosis
- Current Therapies
- Future of Targeted Therapy

EASL-EORTC Clinical Practice Guidelines: BCLC Staging System and Treatment Strategy

PEI = percutaneous ethanol injection;

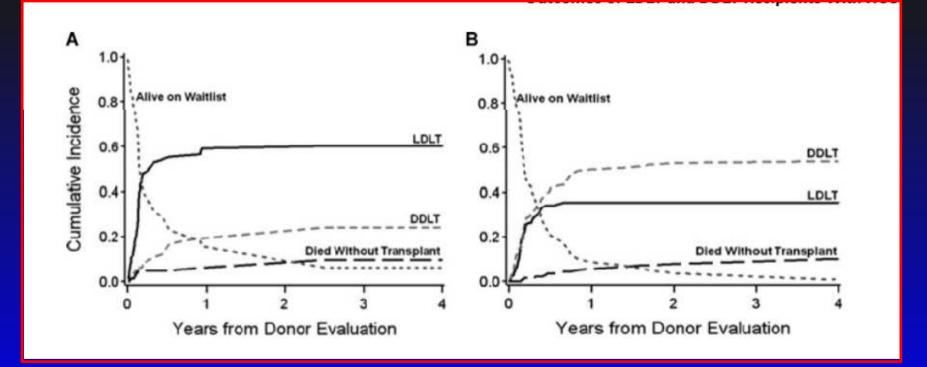
PST = Performance Status test; RFA = radiofrequency ablation.

EASL-EORTC Clinical Practice Guidelines: Management of HCC. J Hepatol 2012;56:908–943

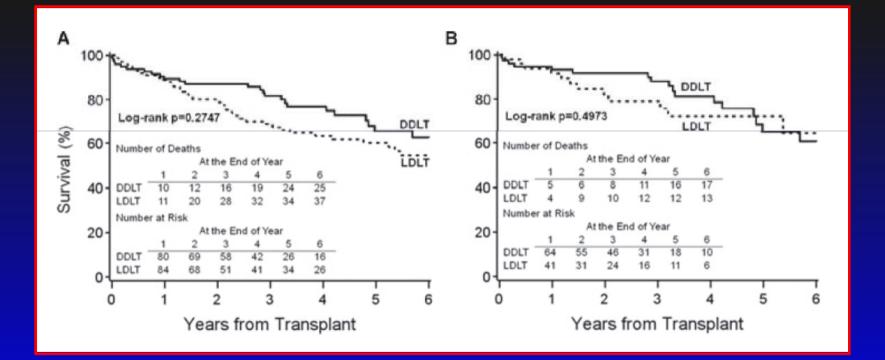

Management of HCC

- Liver transplantation
- Resection
- Tumor ablation
 - Radiofrequency thermal ablation
 - Alcohol injection
 - Chemoembolization
- Targeted molecular therapy
- Chemotherapy
 - Regional/systemic

Potentially curative


Milan Criteria for Liver Transplantation

- If only one tumor, it must be 5 cm or less
- 3 or fewer tumors, each 3 cm or less
- No gross vascular invasion



Mazzafero et al. NEJM 1996, 334:693-700

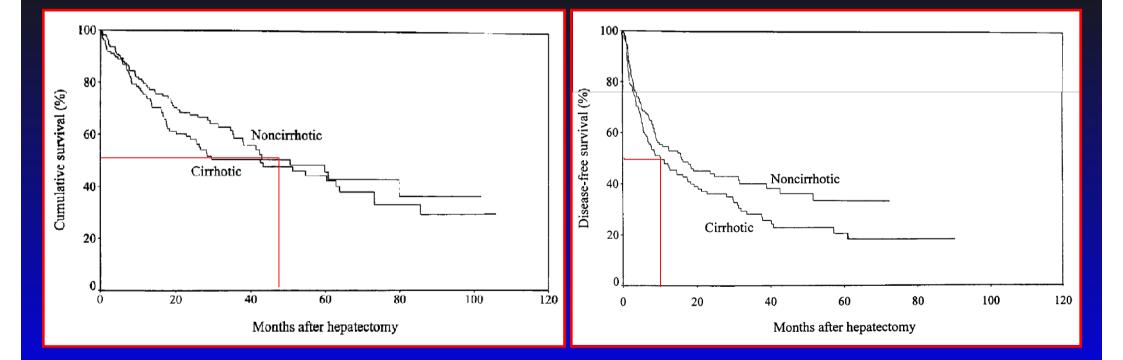
Cumulative probability over time of LDLT, DDLT, remaining alive on the waitlist and death without transplant, from the 1^{rst} living donor evaluation for (A) HCC pts in the pre-MELD and (B) HCC pts in the MELD era

Unadjusted probability of patient survival by time since LDLT or DDLT for (A) all HCC pts and (B) HCC pts in the MELD era

Kukik et al., AJT 2012

Resection

Consider resection in:


- Non-cirrhotics (often those with HBV!)
- Compensated cirrhotics (normal bili and hepatic venous pressure gradient <10 mm Hg)
- Only 10-20% of those in the West are candidates for resection

However, in patients with underlying cirrhosis

- Careful patient selection,
- Meticulous intraoperative technique
- Extremely careful perioperative management,

are mandatory otherwise liver resection is associated with a significant risk of postoperative morbidity and/or mortality.

Cumulative and Disease-free Survival Curves after Resection of HCC in Cirrhotic and Non-Cirrhotic Patients.

Poon et al., JCO 2000

Chemoembolization (TACE)

- The normal liver receives most of its blood supply through the portal vein, and only about 25 percent from the hepatic artery
- Tumors receive almost all of their blood supply from the hepatic artery
- "Dual therapy" using both embolization and chemotherapy
- Now also using Y90: radiolabeled beads

Outcome of TACE

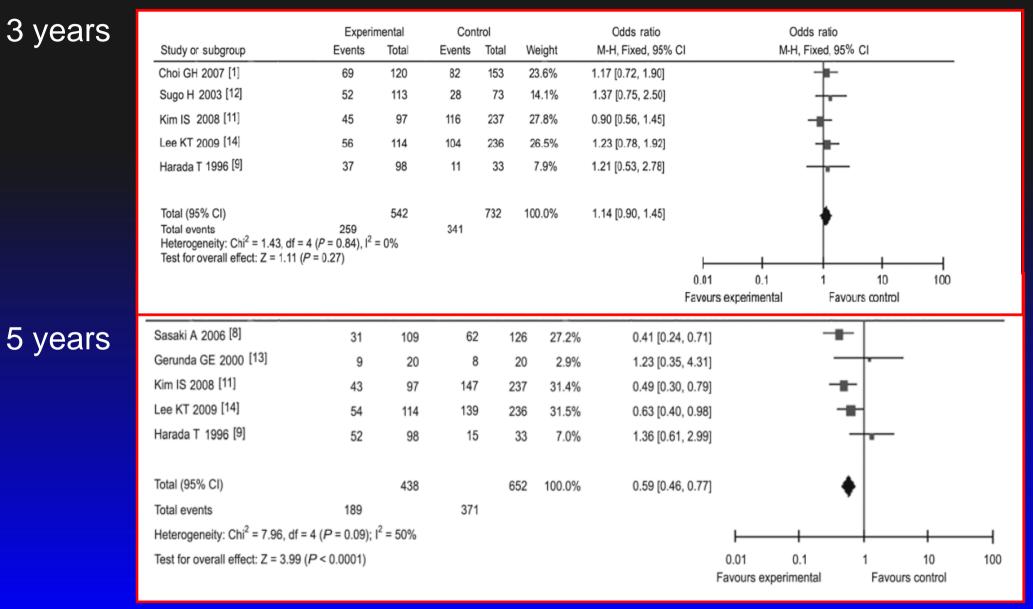
HCC

1	year	survival
2	year	survival
3	year	survival
5	year	survival

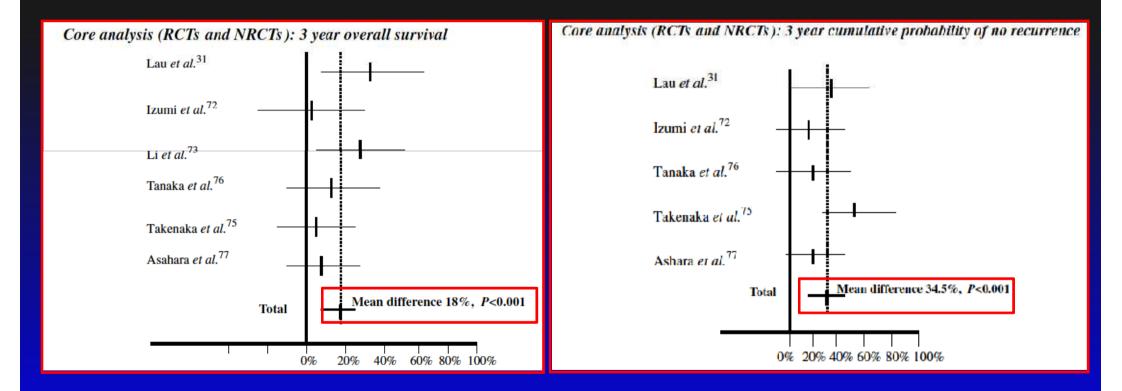
54-88% 33-64% 18-51% <6%

In general the outcome is hard to quantify in a metaanalysis as many different protocols are used by different groups

Review of TACE

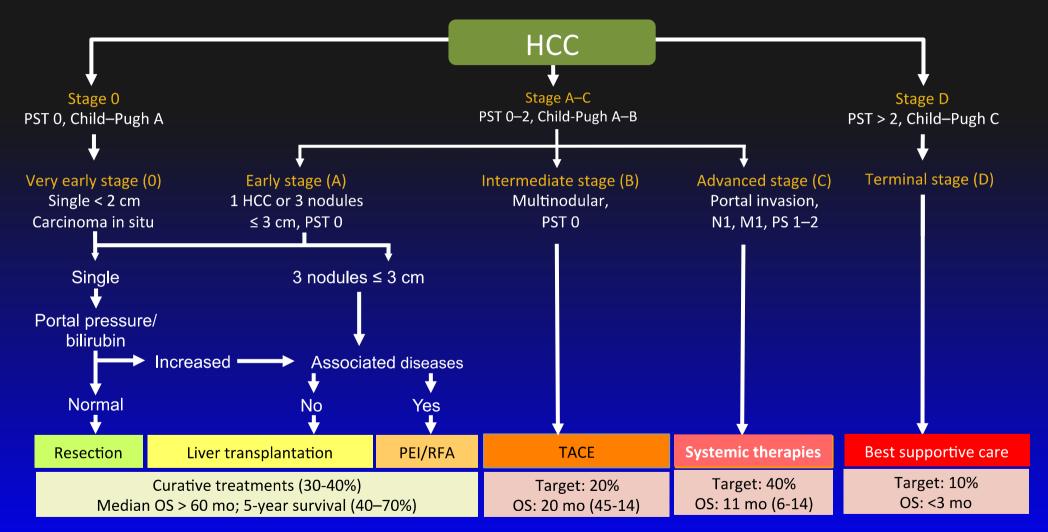

- Overall survival advantage seen with chemoembolization
- Approximately ½ the risk of death with two year follow up
- Response rates in 35% of patients
- Highly selected patients

Other Local Therapies


- RFA
 - Nonrandomized data suggest outcomes as good as resection for small (<2 cm) lesions
- Percutaneous ethanol injection (PEI)
 - has been shown to produce necrosis of small HCC.
 - It is best suited to peripheral lesions, less than 3 cm in diameter

Combined therapies

The 3- and 5-year overall survival rates of TACE + liver resection versus liver resection alone



Post-operative transarterial chemotherapy: cumulative probability of overall survival and of no recurrence at 3 years

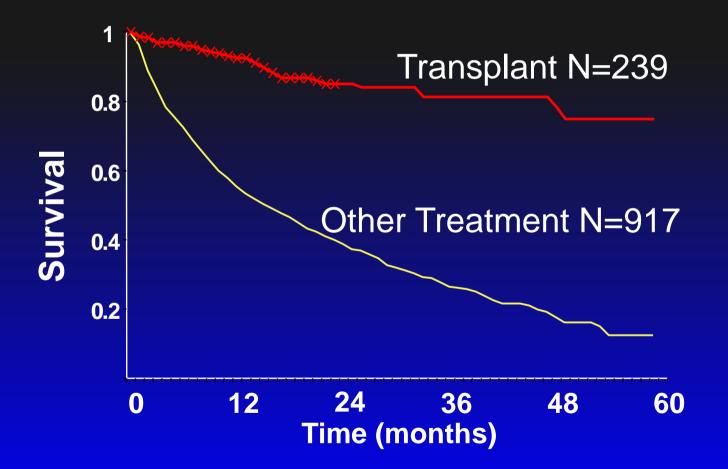
Mathurin et al., APT 2013

EASL-EORTC Clinical Practice Guidelines: BCLC Staging System and Treatment Strategy

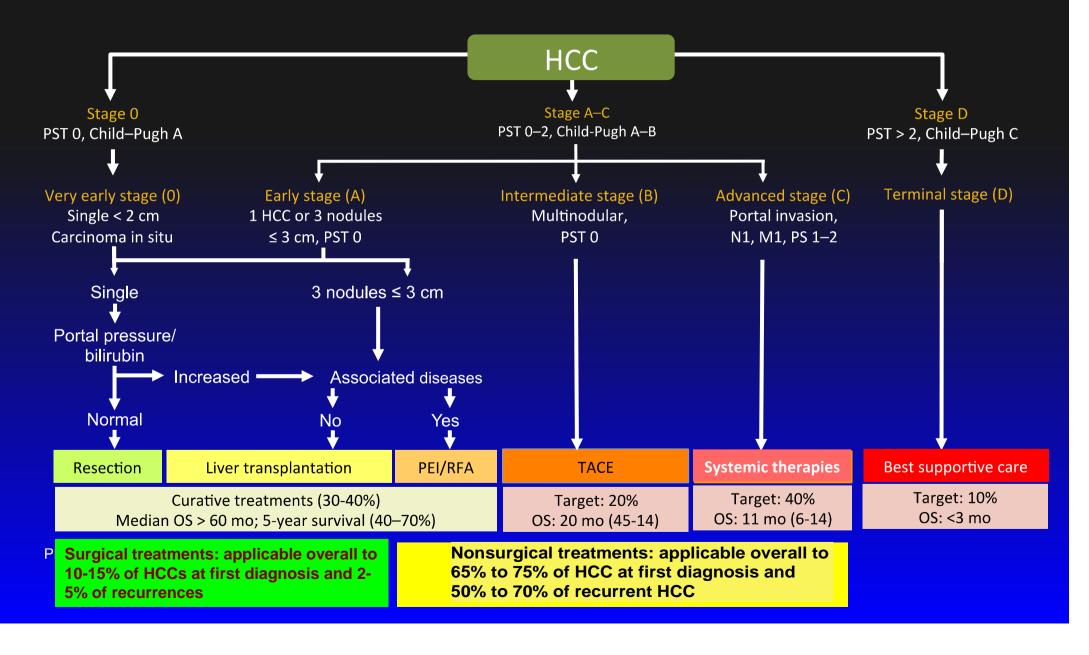
PEI = percutaneous ethanol injection;

PST = Performance Status test; RFA = radiofrequency ablation.

EASL-EORTC Clinical Practice Guidelines: Management of HCC. J Hepatol 2012;56:908–943


Treatment of HCC in US non-Federal Hospitals in 2000

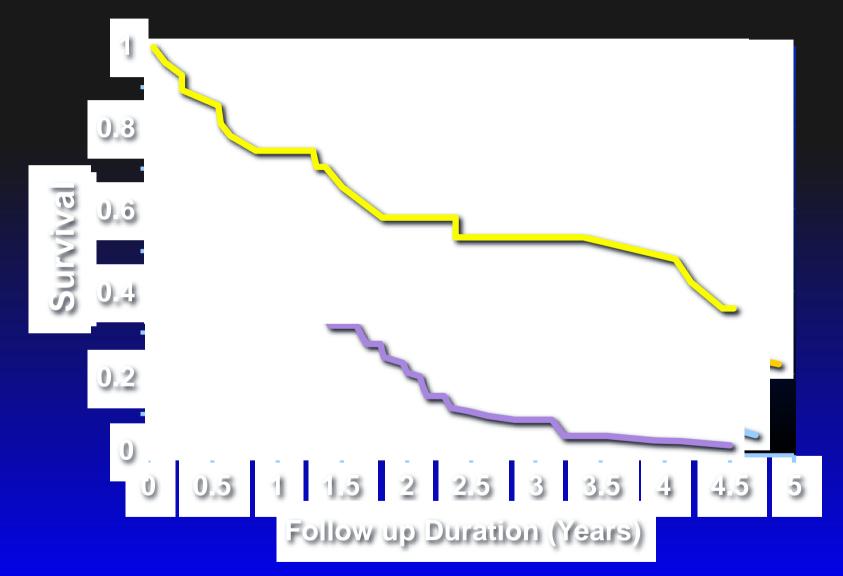
- Surgical Resection: 4.9%
- Liver Transplant: 1.8%
- Local Ablation: 3.5%
- Embolization: 5.5%
- Chemotherapy: 11%


Treatment for HCC Often Suboptimal

- Proportion of patients receiving potentially curative therapy
 - 34.0% of patients with single lesions
 - -34.0% of patients with lesions < 3 cm
 - 19.3% of patients with lesions > 10 cm
 - 4.9% of patients with metastatic disease
- 11.5% of patients ideal for transplantation received it
- 14.3% of patients ideal for surgical resection received it

Survival Curves for Transplant vs. Other Treatment for Hepatocellular Carcinoma

EASL-EORTC Clinical Practice Guidelines: BCLC Staging System and Treatment Strategy

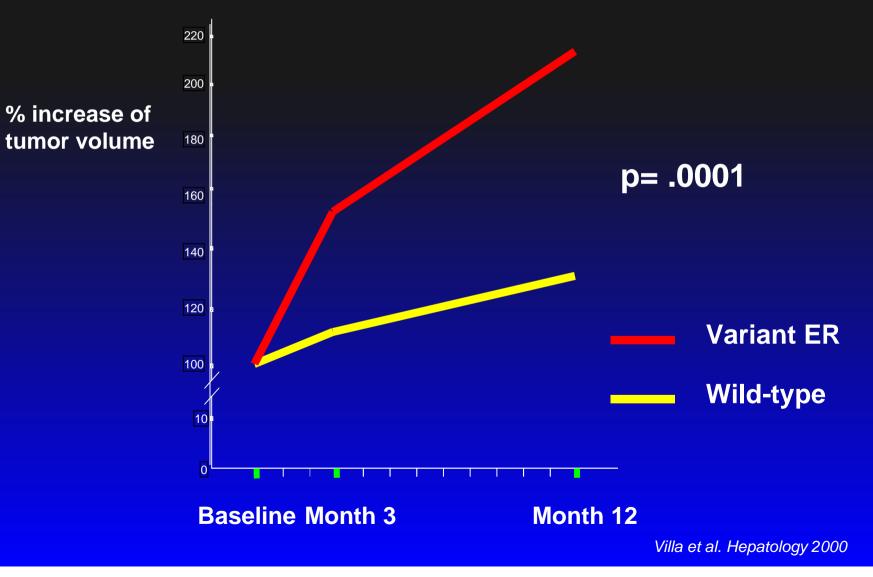

Therapeutic options

- LT: curative but insufficiently available
- Resection: satisfactory results but insufficienlty applicable
- TACE
 - accepted as treatment of choice for unresectable (nonablatable?)
 HCC
 - Response rates in about 35% of patients
 - Best vs good performance status, Child-Pugh class A-B
 - Metaanalyses suggest benefit in well-selected patients for embolization c/w placebo

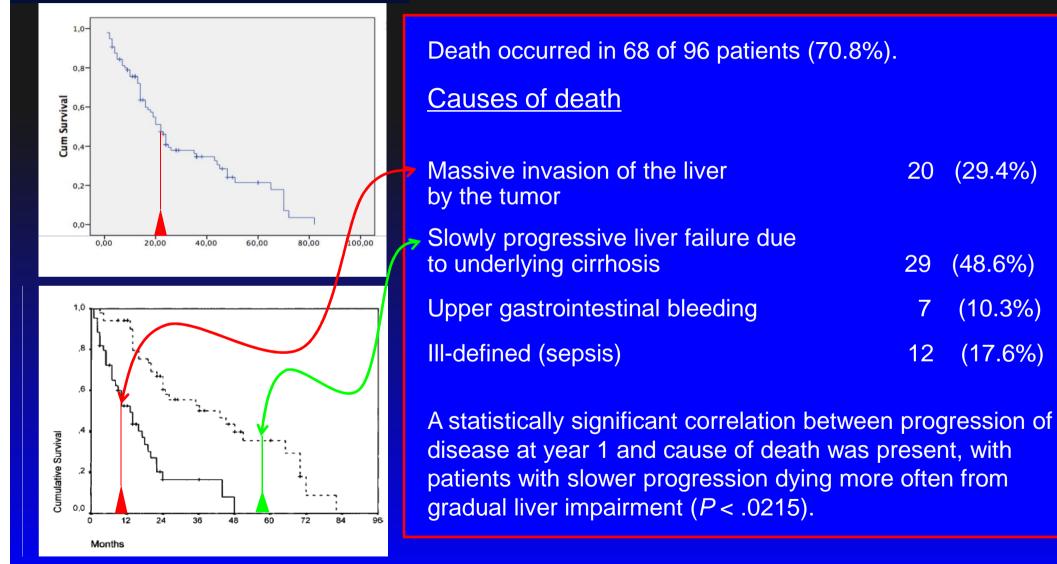
• RFA

- Nonrandomized data suggest outcomes as good as resection for small (<2 cm) lesions
- PEI is for developing countries with limited resources

Outcomes of HCC Treatment



El-Serag HB et al J Hepatology 2006


HCC aggressiveness

- differentation
- vascular invasion
- growth

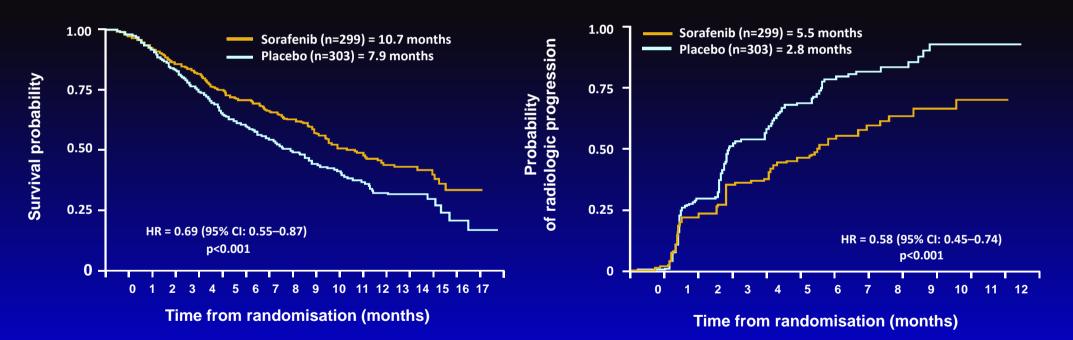
Percent increment of tumor mass at months 3 and 12

Cumulative survival in 96 patients with inoperable HCC

Hepatology 2000

Outline

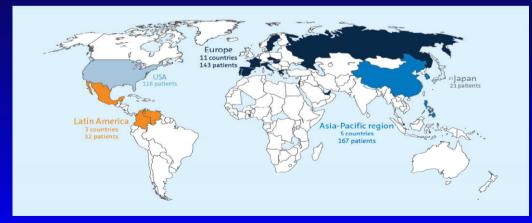
- Definition
- Epidemiology
- Biology
- Diagnosis/Prognosis/Management
- Current Therapies
- Future of Targeted Therapy


Sorafenib

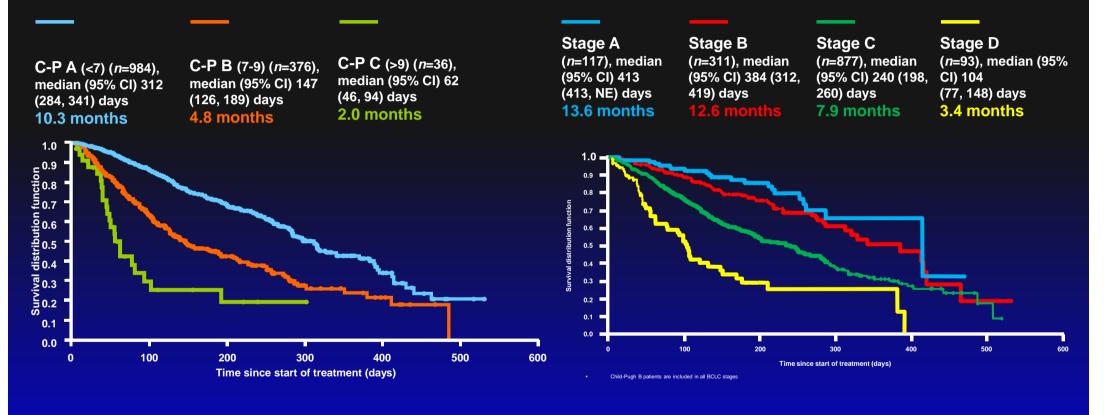
- Small molecule, orally administered
- Multi-kinase inhibitor
- Inhibits tumor-cell proliferation and tumor angiogenesis
 - Inhibits molecular components of the Raf-MEK-ERK signaling pathway, thus inhibiting tumor growth
 - Inhibits the receptor tyrosine kinase activity of vascular endothelial growth factor receptors (VEGFRs) 1, 2, and 3 and platelet-derived growth factor receptor β (PDGFR- β), thus inhibiting neoangiogenesis

SHARP Phase III Trial in Advanced HCC: Results

Overall Survival


Time to Progression (independent central review)

 GIDEON is a global, prospective, non-interventional study that is assessing the use of sorafenib in patients with unresectable HCC within real-life clinical practice


Field - DEBETICE Cruite DE Catients trons 350 sites in 39 countries

- First patient in 2009 last patient in April 2011
- The first interim analysis includes preliminary evaluation of sorafenib use in 500 patients
- The second interim includes 1500 patients
- The final analysis is planned 12 months after enrolment of the 3000th treated patient

Lencioni et al. Int J Clin Pract. 2012 Jul;66(7):675-83

GIDEON 2nd interim analysis: OS by Child-Pugh (A) and BCLC (B) status at study entry

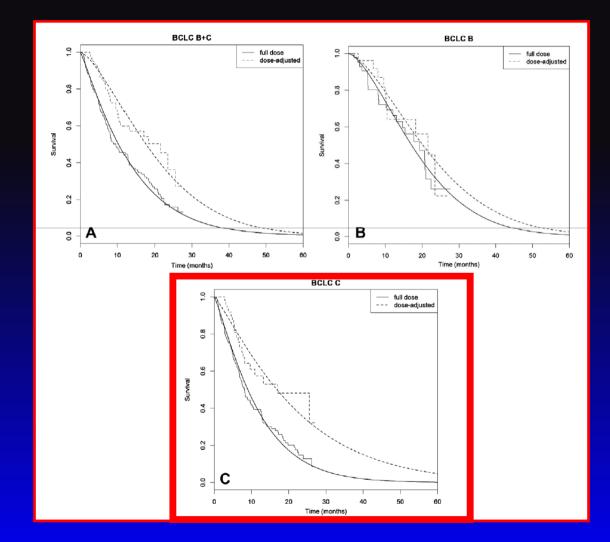
(B)

(A)

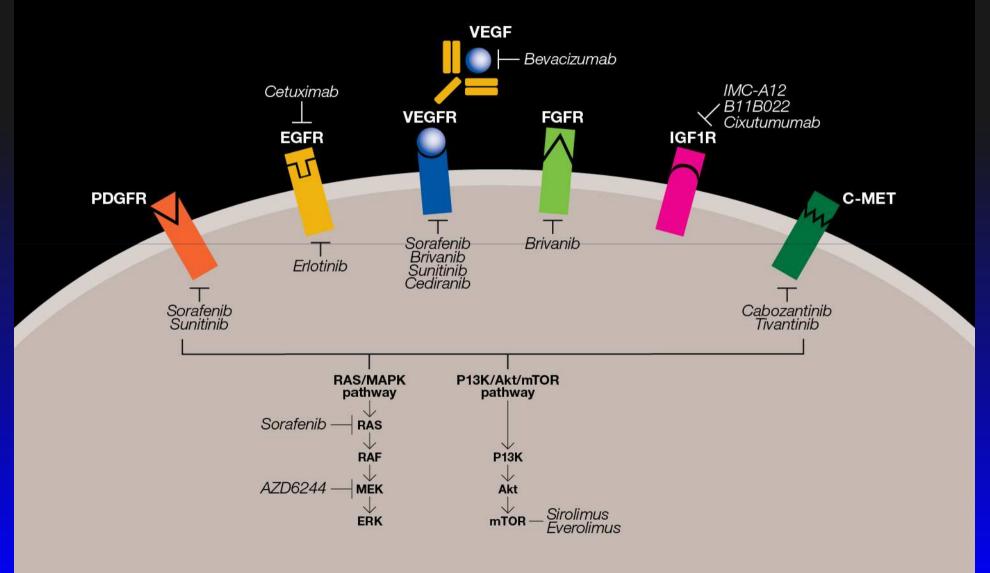
^a207 patients not evaluable CI, confidence interval

Marrero JA, et al. J Clin Oncol. 2011;29(suppl): Abstract 4001.

Field practice - GIDEON study: Safety profile as per 2nd interim analysis


- Disease progression, AE, and deterioration of general condition are major reasons for discontinuation of sorafenib
- Median time from initial diagnosis to Sor initiation was longer in Japan (30 mos) than in other regions (1-3 mos), as was median time from diagnosis to death (100 mos, Japan; 16-37 mos, other regions).
- Regional variations in Sor use were observed. The US and Japan had the lowest median daily doses and the most dose modifications.
- AE profiles were comparable between subgroups of Child-Pugh status.
- A lower initial sorafenib dose of 400 mg/day did not appear to alter AE profiles compared with an initial dose of 800 mg/day. AEs that required discontinuation of sorafenib were various, with a relatively low incidence for each AE in the overall population

Cost-Effectiveness of Sorafenib Treatment in Field Practice for Patients With Hepatocellular Carcinoma


Calogero Cammà,¹ Giuseppe Cabibbo,¹ Salvatore Petta,¹ Marco Enea,² Massimo Iavarone,³ Antonio Grieco,⁴ Antonio Gasbarrini,⁴ Erica Villa,⁵ Claudio Zavaglia,⁶ Raffaele Bruno,⁷ Massimo Colombo,³ and Antonio Craxì¹ on behalf of the WEF and the SOFIA study groups Kaplan-Meier (stair-step line) and estimated (smooth line) survival curves of patients treated with full-dose (solid line) or dose-adjusted (dashed line) sorafenib, according to BCLC stage:(A) entire population (BCLC B and C together); (B) BCLC B stage; (C) BCLC C stage.

Cost-effectiveness of sorafenib for HCC

- Full-dose sorafenib was not cost-effective in the entire cohort of intermediate/advanced HCC patients.
- Dose-adjusted sorafenib is cost-effective in patients with advanced HCC but not in those with intermediate;
- Dose-adjusted sorafenib should be taken into account also in the adjuvant setting after resection/ablation or after TACE and for the design of future comparative trials versus novel targeted therapies.

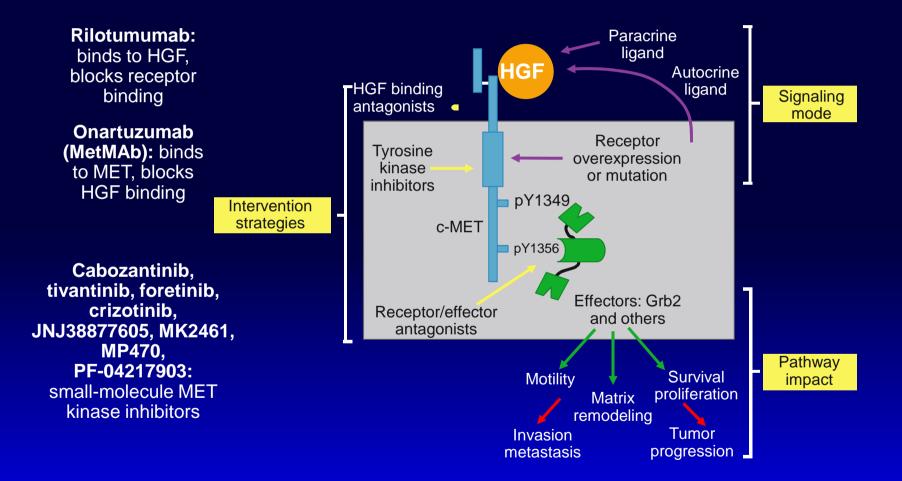
Molecularly Targeted Therapy for HCC

Modified from Siegel et al, Hepatology 52:360-369, 2010

Phase III trials of <u>second-line</u> therapy in advanced HCC

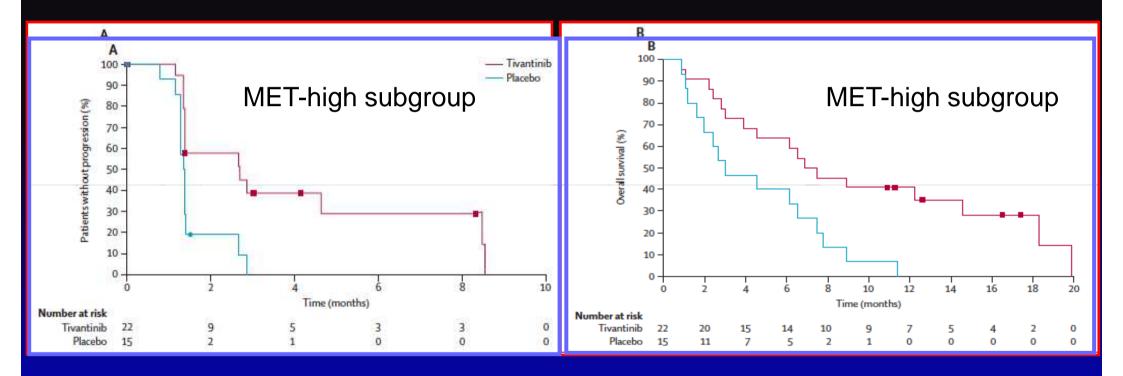
	Study	Phase	Experimental arm	Comparator arm	Patient population
Study	NCT01035229 (EVOLVE-1)	111	Everolimus + BSC	Placebo + BSC	Pts who have progressed or are intolerant to sorafenib therapy, ECOG PS 0–2, Child-Pugh A
FAII	FAILED	111	Brivanib	Placebo	Pts who have failed ≥14 days of sorafenib, ECOG PS 0–2, Child-Pugh A-B7
FAII	NCT01108705 (BRISK-APS)	111	Brivanib + BSC	Placebo + BSC	Asian pts who have progressed or are intolerant to sorafenib therapy, ECOG PS 0–2, Child-Pugh A-B7
FAII	NCT01140347 (REACH)	III	Ramucirumab + BSC	Placebo + BSC	Pts who have progressed or are intolerant to sorafenib therapy, ECOG PS 0–1, Child- Pugh A
FAII	NCT01287585	Ш	ADI-PEG [ADI-PEG 20 (arginine deiminase formulated with polyethylene glycol)] + BSC	Placebo + BSC	Pts who have progressed or are intolerant to sorafenib therapy, ECOG PS 0–2, Child- Pugh A
					www.clinicaltrials.gov
					www.clinicaltrials.gov

Molecular Therapies (Including TKIs, mAbs, and Oligonucleotide Antisense) Currently Under Evaluation in HCC


	Drugs	Phases	Trials, n	Targets
1	Sorafenib	1, 1-2, 2, 3, 4	65	BRAF, VEGFR, PDGFR
2	Erlotinib	1, 1-2, 2, 3	13	EGFR
3	Everolimus	1, 1-2, 2, 3	7	MTORC1
4	Brivanib	1, 2, 3	6	FGFR, VEGFR, PDGFR
5	Sunitinib	2, 3	6	VEGFR, PDGFR, KIT
6	Rapamycin	1, 2–3, 3	5	MTORC1
7	Linifanib	2, 3	2	VEGF, PDGFR
8	PI-88	2, 3	2	Endo-β-D-glucuronidase heparinase
9	Ramucirumab	3	1	VEGFR2
10	Bevacizumab	1, 1-2, 2	20	VEGF
11	AZD6244	1-2, 2	4	MEK
12	Bortezomib	1, 2	4	Proteasome
13	TAC-101	1-2, 2	4	RAR-a
14	Cediranib	1, 2	3	VEGFR
15	Cetuximab	1, 2	3	EGFR
16 17	Cixutumumab Temsirolimus	1, 2 1, 2	3	IGF-1R MTORC1
18	ARQ197	1, 2	2	MET
19	BIBF1120	2	2	VEGFR, PDGFR, FGFR
20	Dasatinib	2	2	BCR-ABL
21	GC33	1	2	GPC3
22	Gefitinib	2	2	EGFR
23	Lapatinib	2	2	EGFR. HER2/neu
24	Licartin	2.4	2	HAb18G/CD147
-25	Pazopanib	2	2	VEGFR, PDGFR, KIT
26	Alvocidib	1, 2	2	Cyclin-dependent kinase
27	AEG35156	1-2	1	XIAP
28	AMG386	2	1	Angiopoietin
29	AVE1642	1, 2	1	IGF-1R
30	AZD8055	1-2	1	MTORC1, MTORC2
31	Regorafenib	2	1	VEGFR, TIE-2
32	BIIB022	1–2	1	IGF-1R
33	Belinostat	1-2	1	Histone deacetylase
34	CS-1008	2	1	TRAIL
35	CT-011	1-2	1	PD1
36 37	E7080 Foretinib	1–2 1	1	VEGFR, FGFR, SCFR MET
38	IDN-6556	2	1	Caspase
30	IMC-1121B	2	1	VEGFR2
40	IMC-A12	2	1	IGF-1R
41	Ispinesib	2	1	Kinesin spindel protein
42	LBH589	1	1	Histone deacetylase
43	LY2181308	1-2	1	Survivin
44	Lonafarnib	2	1	Farnesyl-OH-transferase
45	MLN8237	2	1	Aurora kinase
46	Mapatumumab	1-2	1	TRAIL
47	OSI-906	2	1	IGF-1R, IR
48	Oblimersen	2	1	BCL2
49	Panobinostat	1	1	Histone deacetylase
50	Resminostat	2	1	Histone deacetylase
51	TSU-68	1-2	1	VEGFR, FGFR, PDGFR
52	Talabostat	1	1	Dipeptidyl peptidases
53	Tremelimumab	2	1	B7-CD28
54	Vandetanib	2	1	EGFR, VEGFR, RET
55	Vorinostat	1	1	Histone deacetylase
56	Z-208	1-2	1	RAR

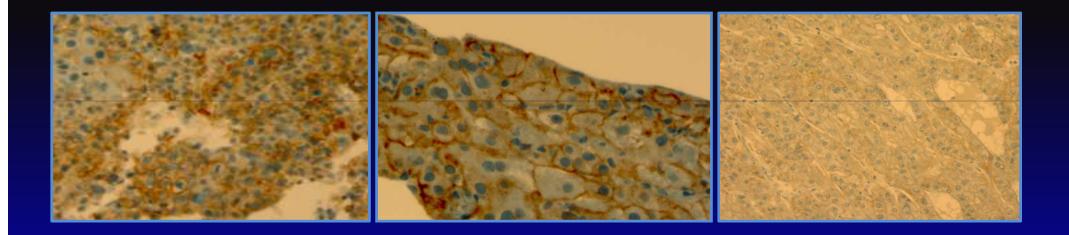
NOTE. Data accessed on February 2011.

FGFR, fibroblast growth factor receptor; IGF-1R, insulin like growth factor receptor 1.


Villanueva and Llovet, 2011

The Role of MET in Oncogenesis

Peruzzi B, et al. Clin Cancer Res. 2006;12:3657-3660.


Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled phase 2 study

Santoro et al. , Lancet Oncology 2013

Liver histochemistry for c-met

MET-High patient on Tivantinib MET-High patient on Placebo MET-Low patient on Placebo

OS 16.49 mos (censored = pt still alive as of April 2012)

OS 2.69 mos

OS 9 mos

Courtesy of G. Abbadessa, Arqule Santoro et al. Lancet Oncology 2013

Conclusions

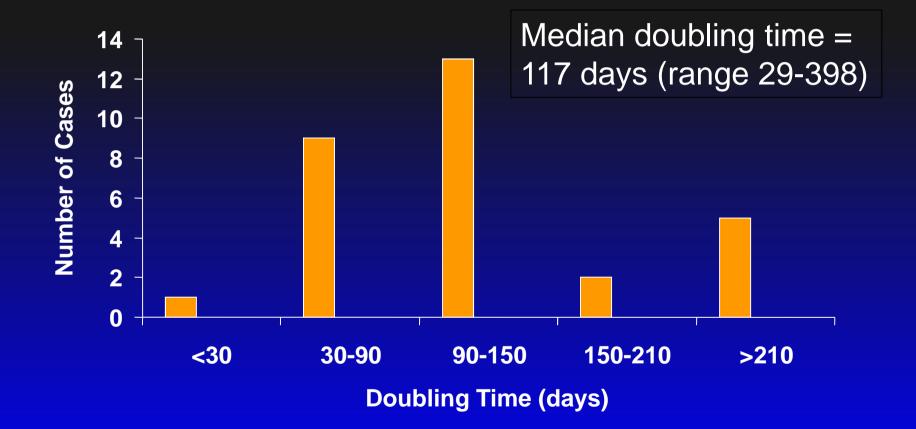
- 1. HCC is a inflammatory tumor with an extremely heterogeneous molecular background
- 2. Inhibition of single pathways is associated with a positive therapeutic result only in case of strong hyperexpression of that pathway
- 3. Molecular characteristics are dynamic and can change during course of disease
- 1. This means that the targeted therapeutic approach has to be complex and adapted to changing conditions of the tumoral micro-environment.

Gastroenterology Unit, Modena

Barbara Lei Julia Blume Veronica Bernabucci Lab Rosina Critelli

Anna Ferrari

Ilva Ferretti

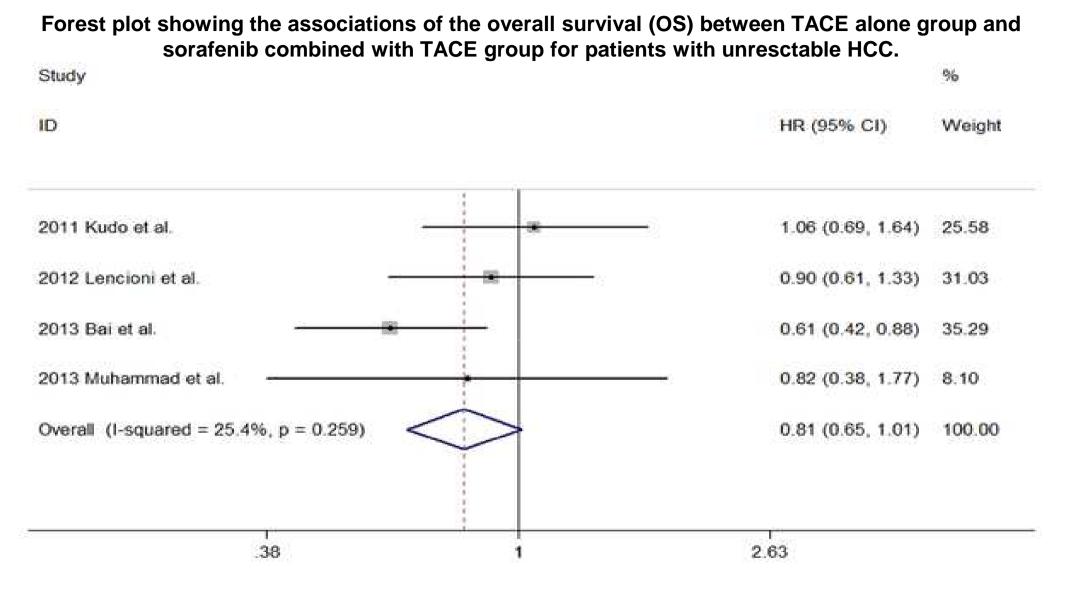

Amanda Vestito Ramona Zecchini Nicola De Maria Filippo Schepis Amalia Graziosi

Monica Luongo

Radiology 2, AOU, ModenaGuido MarzocchiStefano ColopiCriVirginia d'AndreaEnnio GalloPathology, AOU, ModenaLuisa LosiLiver Transplant, ModenaGiorgio GerundaGian Piero Guerrini

Cristian Caporali

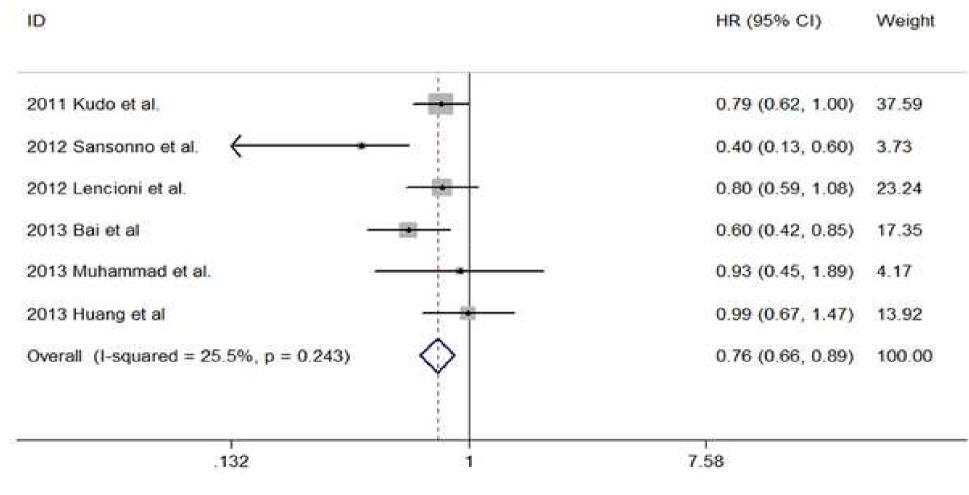
Growth Rate of HCC


Sheu J-C et al, Gastro 1985;89:259

Advanced Disease: Chemotherapy Historically Disappointing

• Difficult to give chemotherapy with liver compromise

Overexpression of MDR-1 gene


Targets until now have been poorly defined

Liu L, Chen H, Wang M, Zhao Y, et al. (2014) Combination Therapy of Sorafenib and TACE for Unresectable HCC: A Systematic Review and Meta-Analysis. PLoS ONE 9(3): e91124. doi:10.1371/journal.pone.0091124 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091124

Forest plot showing the associations of the time to progression (TTP) between TACE alone group and sorafenib combined with TACE group for patients with unresctable HCC. Study

Liu L, Chen H, Wang M, Zhao Y, et al. (2014) Combination Therapy of Sorafenib and TACE for Unresectable HCC: A Systematic Review and Meta-Analysis. PLoS ONE 9(3): e91124. doi:10.1371/journal.pone.0091124 http://www.plosone.org/article/info:doi/10.1371/journal.pone.0091124

Intra-arterial Radioembolization With Yttrium-90: Rationale and History

- Radioembolization: Use of intra-arterially delivered yttrium-90 microspheres emitting high-dose radiation for the treatment of liver tumors
- Yttrium-90 microspheres
 - Average diameter: 20-30 μm
 - 100% pure beta emitter (0.9367 MeV)
 - Physical half-life: 64.2 hours
 - Irradiates tissue with average path length of 2.5 mm (maximum: 11 mm)

Clinical Response to Yttrium-90 Microspheres

Outcome	Dancey et al ^[1] (N = 20)	Carr et al ^[2] (N = 65)	Geschwind et al ^[3] (N = 80)	Salem et al ^[4] (N = 43)
Response rate, %		39		47
	y (> 104 Gy)			
Okuda stage I		649 days	628 days	24.4 mos
Okuda stage II		302 days	384 days	12.5 mos

- 1. Dancey JE, et al. J Nucl Med. 2000;41:1673-1681.
- 2. Carr Bl. Liver Transpl. 2004;10(2 suppl 1):S107-S110.
- 3. Geschwind JF, et al. Gastroenterology. 2004;127(5 suppl 1):S194-S205.
- 4. Salem R, et al. J Vasc Interv Radiol. 2005;16:1627-1639.