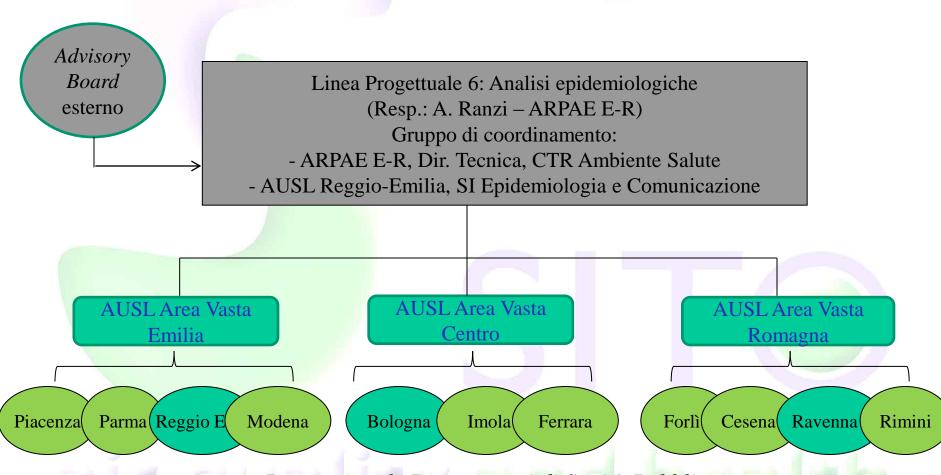
13-15 Aprile 2016

Reggio Children c/o Centro Internazionale Loris Malaguzzi – REGGIO EMILIA

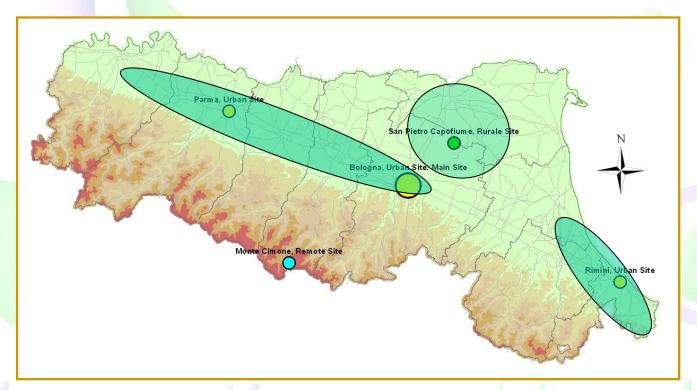
Il progetto Supersito

Andrea Ranzi


ARPAE Emilia-Romagna Direzione Tecnica Centro Tematico Regionale Ambiente e Salute

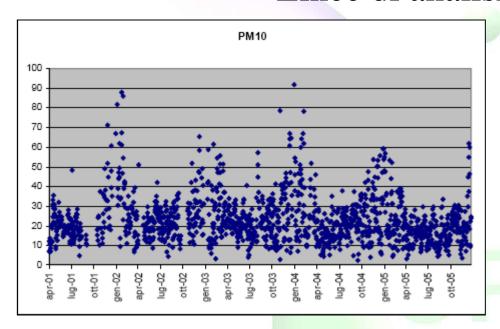
Progetto Supersito

Responsabili: V. Poluzzi (ARPAE E-R), P. Angelini (Servizio Sanità Pubblica RER)



Rete regionale Dipartimenti di Sanità Pubblica

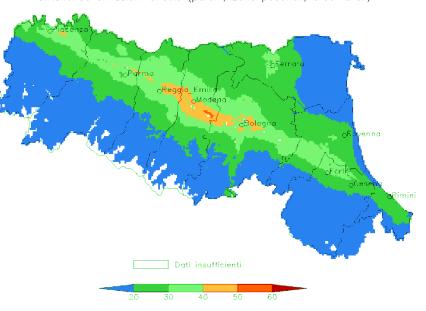
(in blu i Punti di Coordinamento Area Vasta)


LP6 – ANALISI EPIDEMIOLOGICHE SUGLI EFFETTI A BREVE E A LUNGO TERMINE

Aree di indagine

air quality and health

Linee di analisi della LP6


Effetti acuti: Legati a rapide variazioni dell'esposizione (incrementi della concentrazione giornaliera degli inquinanti); Con latenza breve (ore o giorni dall'esposizione)

differenze temporali

NO₂ di fondo: stima della concentrazione media $[\mu g/m^3]$ nel periodo 01JAN2009-31DEC2009 (dati validi 8443) lontano da emissioni dirette (parchi, zone pedonali, aree rurali)

Effetti cronici: Associati ad esposizioni prolungate nel tempo (medie annuali degli inquinanti), che si manifestano a lunga distanza dall'esposizione

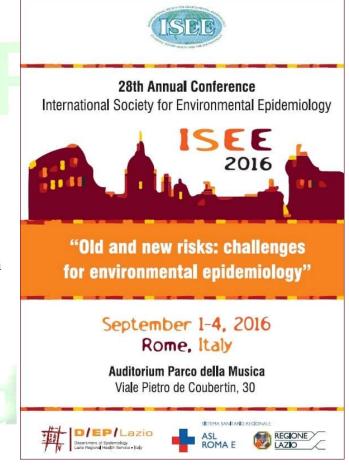
differenze spaziali

Periodo di analisi serie temporali

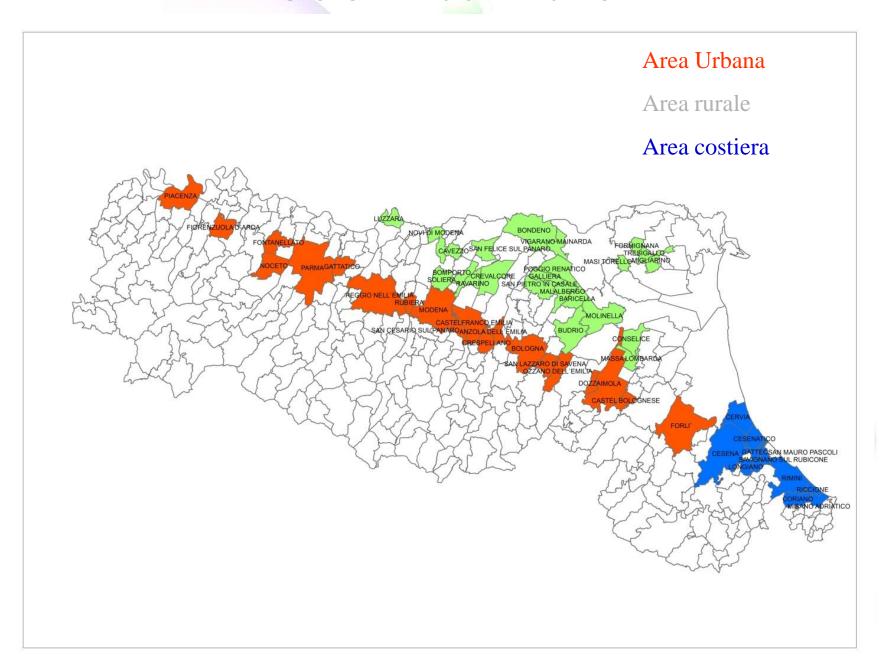
	2012	(lug2012)	2013	2014	dic2014
Componenti particolato					
Profili dimensionali (BO-SPC	C)				
Source Apportionment (BO)	_				
Mortalità (Naturale, Resp,CV	<i>'</i>)		DE	D	
Ricoveri (Resp,CV)	_	W		R	

SITO	BO:pop. 615583		PR:pop. 794096		RN:pop. 430503		SPC:pop. 270880	
	N°	%	N°	%	N°	%	N°	%
Mort. Nat. (0-799)	17434	1,13	20225	1,02	10267	0,96	7573	1,11
Mort. CV (390-459	6519	0,42	7695	0,39	3636	0,34	2987	0,44
Mort. Resp. (460-519)	1551	0,10	1533	0,08	872	0,08	542	0,08
Ricoveri CV (390-459)	20499	1,10	27546	1,15	13778	1,07	9010	1,10
Ricoveri Resp. (460-519)	13730	0,74	18798	0,79	9793	0,76	4836	0,59

Risultati analisi a breve termine:

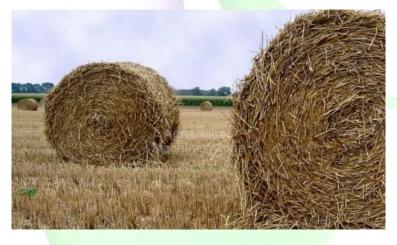

in corso, i primi risultati sono in linea con gli studi di letteratura.

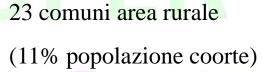
I risultati verranno presentati e discussi a Roma in un simposio organizzato all'interno del prossimo Convegno dell'ISEE (*International Society of Environmental Epidemiology*)


Programma provvisorio

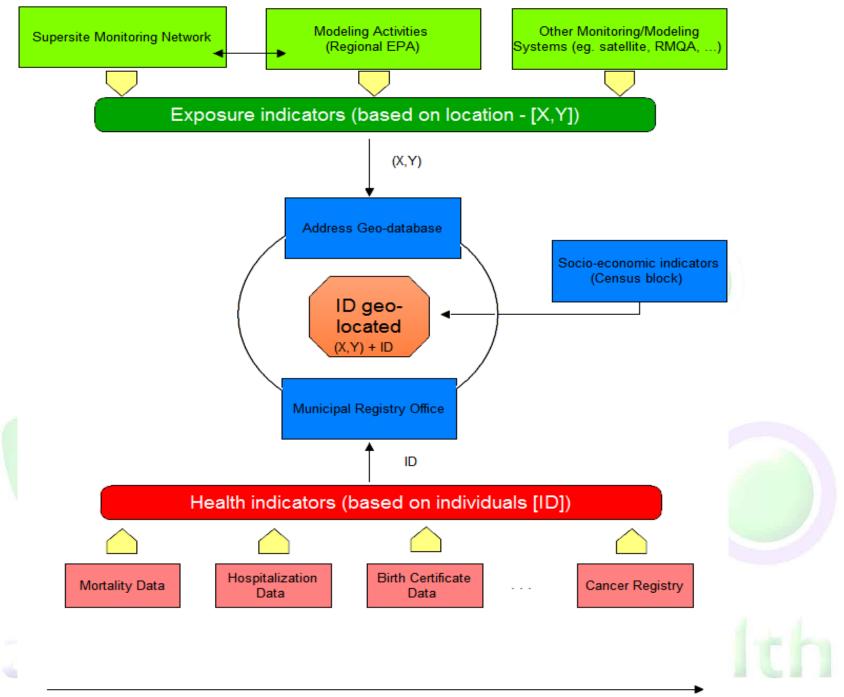
Chair: Antonella Zanobetti (Harvard School of Public Health, USA)

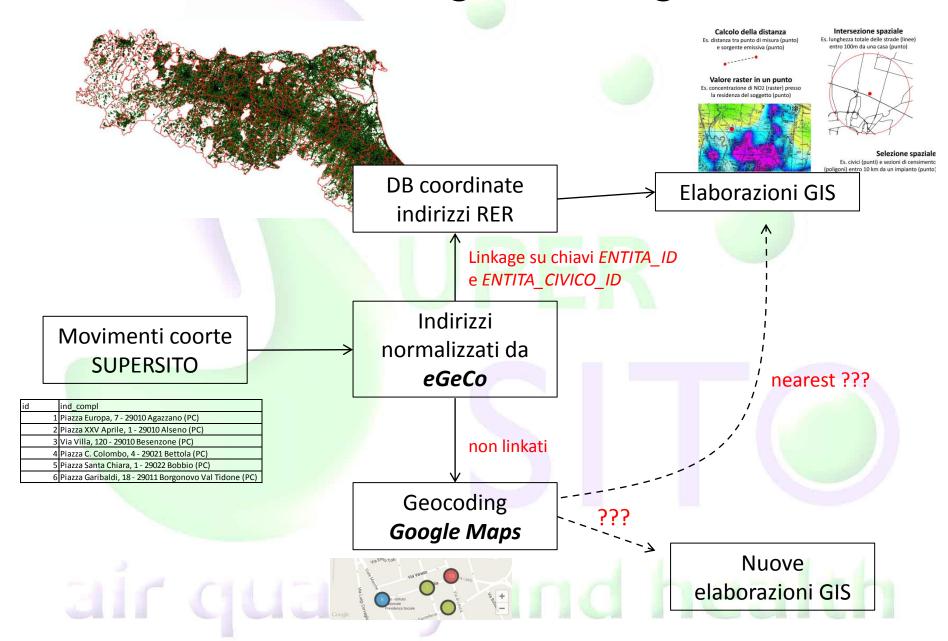
- 1. The state of the art of short-term effects of fine particle components (Atkinson RW, St George's University of London UK)
- 2. Supersite Project: Physical and chemical characteristics of atmospheric aerosols (*Poluzzi V., Regional EPA of Emilia-Romagna*)
- 3. Supersite Project: Toxicological studies (Colacci A., Regional EPA of Emilia-Romagna)
- 4. Supersite Project: Epidemiological findings on short-term and long-term effects (*Ranzi A., Regional EPA of Emilia-Romagna*)
- 5. Methodological aspects of epidemiological studies of particle components (*Hoek G, IRAS University of Utrecht, NL*)


COORTE SUPERSITO


54 comuni, 2+ milioni di abitanti

11 comuni area costiera (20% popolazione coorte)




20 comuni area urbana (69% popolazione coorte)

Address geocoding

Descrittive parziali

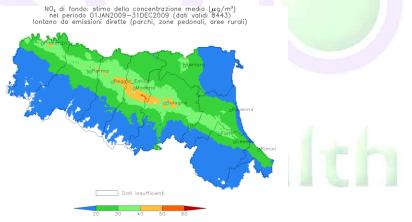
(45 comuni file master)

		Area		
	Total	Urbana	Rurale	Costiera
Total no. of subjects	2,345,876	1,681,775	318,373	345,728
Person-years at risk	19,339,713.51	13,589,266.80	2,648,940.48	3,101,506.24
Median lenght of FU (years)	9.28	8.83	9.40	11.77
Subjects with gap	77,746	60,685	8,606	8,455
Average time on gap if gap (years)	2.91	2.94	2.66	2.99
No. of deads	224,372	164,830	29,429	30,113
IR*100,000 py	1,160.16	1,212.94	1,110.97	970.92

stset timevar, id(id_comune) failure(morto==1) origin(time 0) exit(time mdy(12,31,2013)) enter(time mdy(1,1,2001)) time0(dataisc_2) scale (365.25)

Valutazione dell'esposizione in studi sugli effetti a lungo termine dell'inquinamento atmosferico

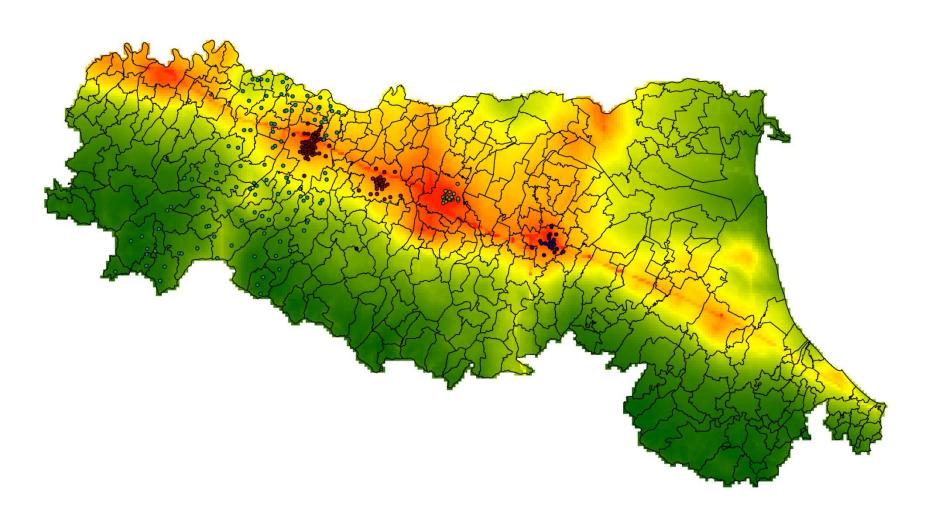
1. Proximity models



2. LUR (Land Use Regression models)

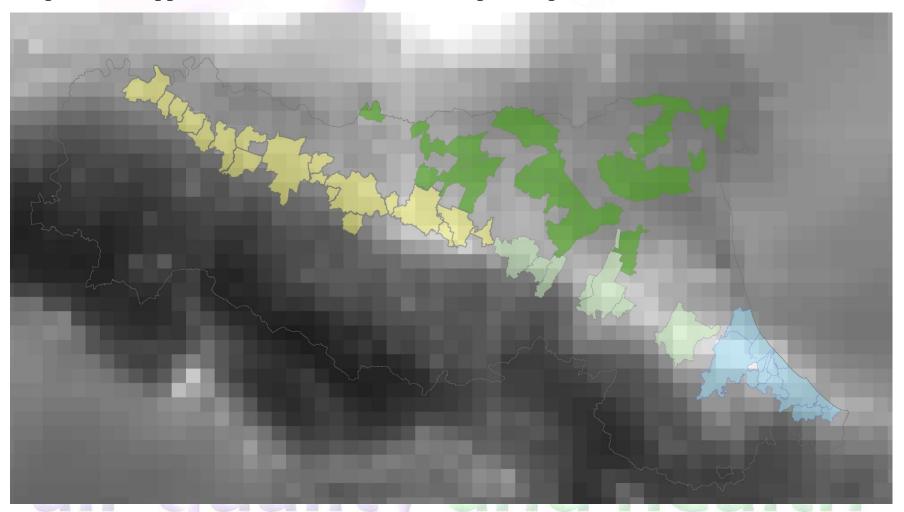
3. Dispersion models

air quality



Variabili geografiche calcolate per civico residenziale

Variabile	Unità misura	Buffer
TRAFFICO:		
Grafo stradale Italia <u>Eurostreet</u> (HTR: FRC=0	0,1,2,3,4)	
Distanza dalla strada più vicina	metri	/
Distanza dalla HTR più vicina	metri	/
Distanza da autostrade	metri	/
Totale Strade	metri	75, 150, 300 metri
Totale HTR	metri	75, 150, 300 metri
Grafo stradale comunale (HTR > 10.000 vet	ture)	
Distanza dalla strada più vicina	metri	/
Distanza dalla HTR più vicina	metri	/
Totale Strade	metri	75, 150, 300 metri
Totale HTR	metri	75, 150, 300 metri
Densità di traffico totale	veicoli*metri	75, 150, 300 metri
Densità di traffico HTR	veicoli*metri	75, 150, 300 metri
USO DEL SUOLO (Corine Land Cover)		
• Urbana		150, 300, 500, 1000, 5000 m.
 Extraurbana 		
Industriale	m²	
 Verde urbano 		
Semi-naturale		
Agricolo		-
Distanza impianti AIA	metri	/
POPOLAZIONE:		
Sezioni di censimento ISTAT		
 Popolazione censuaria al 2001 	numerosità	150, 300, 500, 1000, 5000 m.
 Popolazione censuaria al 2011 	numerosita	
ALTITUDINE:		
Calcolo altitudine	metri	/



LUR – passivi posizionati

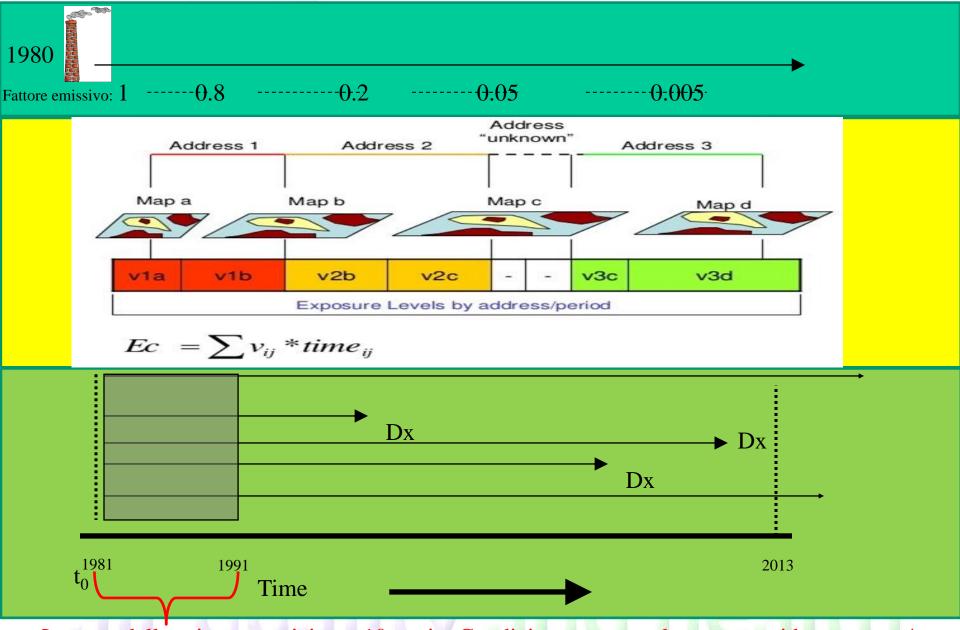
Carbonio elementare – mappa marzo 2012

Disponibili mappe mensili 2012-2014 su dati Supersito per: EC, OC, nitrati, ammonio

Coorte supersito e dati RT

Caratteristiche dei RT utili agli studi di epidemiologia ambientale

- Superare il vincolo amministrativo per la definizione di aree a rischio ambientale
- Approccio geografico
- "Contributo specifico dei RT a studi di epidemiologia ambientale: [...] le variabili anagrafiche individuali permettono la storicizzazione degli indirizzi e la valutazione del tempo di esposizione ai fattori di rischio" (Fusco M.)


- La struttura dello studio di coorte permette di caratterizzare ugualmente il "denominatore" rispetto alla storia residenziale e quindi all'esposizione ambientale
 - Fino a quando (indietro nel tempo?)
 - Come caratterizzare il periodo precedente?

Exposure assessment for long-term effects studies

- 1. Proximity models: ricalcolabili a patto di avere informazioni temporali sulla geografia del territorio (es. grafi stradali o uso del territorio)
- 2. LUR (Land Use Regression models): utilizzo di informazioni temporali (es. serie storiche di centraline fisse) per back-estrapolazione delle mappe (progetto ESCAPE)
- 3. Dispersion models: progetto Supersito

Inquinante	tipo mappa	copertura temporale	Risoluzione				
PM2.5	annuale	2003-2012	10 km				
PM2.5	mensile	2003-2010	10 km				
PM10 e PM2.5	annuale	2010	5 km				
PM10 e PM2.5	annuale	2009-2013	1 km				
Spazializzazione delle component	Spazializzazione delle componenti						
ОС							
EC		2012-2014	F I				
nitrati	mensili-annuali		5 km				
ammonio	and the same						
DATI SATELLITARI (?)	giornalieri	Dal 2001	1 km				

Esempio: coorte AIA Modena

Latenza dalla prima esposizione :10 anni – Condizione per arruolamento: residenza entro 4 km dall'impianto (nessun rischio per i primi 10 anni?)

Situazione coorte al 2001

- 2001: 52403
 - 1. Presenti nell'area da 5 anni: 41559 (79.3%)
 - 2. Fermi da 5 anni: 31565 (60.2%)
 - 3. Presenti nell'area da 10 anni: 35545 (67.8%)
 - 4. Fermi da 10 anni: 21214 (40.5%)

– com'é l'esposizione dei "non fermi"?

	liv. 1	liv. 2	liv. 3	liv. 4	liv. 5
Exp_2001	20%	20%	20%	20%	20%
1	18	20	20	20	22
2	23	16	15	24	22
3	17	20	20	21	22
4	25	14	11	28	22

Contents lists available at ScienceDirect

Environmental Research



Developing small-area predictions for smoking and obesity prevalence in the United States for use in Environmental Public Health Tracking

Alberto M. Ortega Hinojosa ^{a,*}, Molly M. Davies ^a, Sarah Jarjour ^a, Richard T. Burnett ^b, Jennifer K. Mann ^a, Edward Hughes ^c, John R. Balmes ^{a,d}, Michelle C. Turner ^e, Michael Jerrett ^a

Le stime dei principali determinanti della salute, come il fumo e l'obesità, a livello di piccola area e basate su survey sono essenziali per comprendere la geografia del rischio.

ty and health

Epidemiologia ambientale

- Si va verso studi di popolazione potenti dal punto di vista della potenza statistica
 - studi longitudinali (retrospettivi) con uso di dati correnti
 - Elevata numerosità
 - Disponibilità di dati sanitari e ambientali a diverso grado di spazializzazione
 - Informazioni socio-economiche a livello aggregato
 - Poca informazione su determinanti individuali
 - Studi longitudinali che utilizzino covariate individuali su stili di vita aggregate ad alta risoluzione a partire da survey. Estensione anche a considerazioni sull'esposizione ambientale

Grazie per l'attenzione

http://www.supersito-er.it