MATERIALI E METODI
MATERIALS AND METHODS
6 MATERIALI E METODI
MATERIALS AND METHODS

INTRODUZIONE
L’ASSOCIAZIONE ITALIANA REGISTRI TUMORI
I Registri di popolazione generali erano 3 nei primi anni Ottanta, 12 nei primi anni Novanta, 21 nei primi anni Duemila. Quelli considerati nella presente monografia sono 42 (Figura 1).
Obiettivo fondamentale di questo studio è la stima di statistiche di sopravvivenza dei casi di tumore diagnostica-

Figure 1. Italian areas covered by AIRTUM included in the present publication.

INTRODUCTION
THE ITALIAN NETWORK OF CANCER REGISTRIES
Formally established in 1997, the Italian Network of Cancer Registries, AIRTUM (called AIRT until 2006) promotes and supports activities and research programmes for both general and specialized population-based Italian cancer registries. AIRTUM has developed a central database to collect and store cancer registry data and to make them available for collaborative studies and research activities after an official data accuracy and completeness quality check.
Cancer registration in Italy began in the 1970s and has steadily developed in terms of experience and numbers, with steadily increasing coverage of the Italian population.
In the early 1980s, there were only 3 general cancer registries in Italy; their number grew to 12 in the early 1990s and 21 in the 2000s. The cancer registries considered in this monograph are 42 (Figure 1).
One of the most important aims of this study is to estimate survival statistics of cancer cases diagnosed from 2005 to 2009. The population covered by cancer registration in the last year of this interval is shown in Table 1. In 2009, AIRTUM cancer registries covered more than 31 million subjects, representing 53% of the entire Italian population (70% in the North-West and in the North-East, 23% in the Centre, and 49% in the South). Regional coverage varied from 0% for some regions (Basilicata, Abruzzo, Molise, and Valle d’Aosta) up to 100% (Umbria, Friuli Venezia Giulia, Trento, and Bolzano).
It is worth emphasizing that cancer registration is continuously expanding in Italy. Up-to-date coverage data can be found on the AIRTUM website (http://www.registri-tumori.it/cms/it/copertura).

THE DATABASE
Since 2005, AIRTUM has a central database, which stores the data from all accredited registries. Thanks to the implementation of this database, which is one of the main formal aims of the network, AIRTUM was able to define the type of data to be collected. All cancer registries transfer data to the AIRTUM database following a standard protocol, performing regular updates over time. Each registry
ti negli anni 2005-2009. Nell’ultimo anno di questo intervallo la copertura della popolazione dalla registrazione dei tumori è mostrata in Tabella 1. Nel 2009 i Registri accreditati dall’AIRTUM monitoravano oltre 31.000.000 di italiani, pari al 53% della popolazione residente, con percentuali che variavano da un’area all’altra del Paese (70% nel Nord-Ovest e nel Nord-Est, 23% nel Centro e 49% al Sud). La copertura regionale variava dallo 0% per alcune Regioni (Basilicata, Abruzzo, Molise e Valle d’Aosta), fino al 100% (Umbria, Friuli Venezia Giulia e le province autonome di Trento e Bolzano).

LA BANCA DATI

Dal 2005 l’AIRTUM ha costituito formalmente una banca dati con lo scopo di raccogliere unitariamente le informazioni prodotte dai singoli Registri accreditati. Grazie alla realizzazione della banca dati, che rientra tra gli obiettivi statutari dell’Associazione, l’AIRTUM ha potuto formalizzare la tipologia dei dati raccolti. Tutti i Registri Tumori trasferiscono infatti ai banca dati le informazioni secondo un tracciato record standard, assicurandone anche il continuo aggiornamento. I singoli Registri possono inviare nuovi dati e integrare i dati già presenti, incluso l’aggiornamento del follow-up e dello stato in vita.

DEFINIZIONI

DATI RICHIESTI

MATERIALI E METODI

TUMORI IN ITALIA RAPPORTO AIRTUM 2016 SOPRAVVIVENZA

<table>
<thead>
<tr>
<th>REGION</th>
<th>ITALIAN POPULATION 2009</th>
<th>RESIDENTS IN AREAS COVERED BY GENERAL CANCER REGISTRIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n.</td>
<td>n.</td>
</tr>
<tr>
<td>Piemonte</td>
<td>4,356,322</td>
<td>1,240,201</td>
</tr>
<tr>
<td>Valle d’Aosta</td>
<td>126,369</td>
<td>-</td>
</tr>
<tr>
<td>Lombardia</td>
<td>9,545,515</td>
<td>8,853,959</td>
</tr>
<tr>
<td>Liguria</td>
<td>1,577,301</td>
<td>862,829</td>
</tr>
<tr>
<td>NORTH-WEST</td>
<td>15,605,507</td>
<td>10,956,989</td>
</tr>
<tr>
<td>Trentino-Alto Adige</td>
<td>1,009,440</td>
<td>1,009,440</td>
</tr>
<tr>
<td>Veneto</td>
<td>4,834,776</td>
<td>2,333,374</td>
</tr>
<tr>
<td>Friuli-Venezia Giulia</td>
<td>1,221,392</td>
<td>1,221,392</td>
</tr>
<tr>
<td>Emilia-Romagna</td>
<td>4,277,139</td>
<td>3,315,834</td>
</tr>
<tr>
<td>NORTH-EAST</td>
<td>11,342,747</td>
<td>7,880,040</td>
</tr>
<tr>
<td>Toscana</td>
<td>3,641,389</td>
<td>1,203,911</td>
</tr>
<tr>
<td>Umbria</td>
<td>875,261</td>
<td>875,261</td>
</tr>
<tr>
<td>Marche</td>
<td>1,536,302</td>
<td>-</td>
</tr>
<tr>
<td>Lazio</td>
<td>5,401,837</td>
<td>531,494</td>
</tr>
<tr>
<td>CENTRE</td>
<td>11,454,789</td>
<td>2,610,666</td>
</tr>
<tr>
<td>Abruzzo</td>
<td>1,306,029</td>
<td>-</td>
</tr>
<tr>
<td>Molise</td>
<td>316,955</td>
<td>-</td>
</tr>
<tr>
<td>Campania</td>
<td>5,750,382</td>
<td>2,250,319</td>
</tr>
<tr>
<td>Puglia</td>
<td>4,043,827</td>
<td>2,173,958</td>
</tr>
<tr>
<td>Basilicata</td>
<td>583,556</td>
<td>-</td>
</tr>
<tr>
<td>Calabria</td>
<td>1,970,780</td>
<td>361,683</td>
</tr>
<tr>
<td>Sicilia</td>
<td>4,990,588</td>
<td>4,544,034</td>
</tr>
<tr>
<td>Sardegna</td>
<td>1,642,583</td>
<td>694,803</td>
</tr>
<tr>
<td>SOUTH</td>
<td>20,604,700</td>
<td>10,024,797</td>
</tr>
<tr>
<td>TOTAL</td>
<td>59,007,743</td>
<td>31,472,492</td>
</tr>
</tbody>
</table>

Table 1. Distribution of the Italian resident population overall and in areas covered by general cancer registries (AIRTUM), by region and geographical area. Italy, 2009.

can send new data or update old records with new variables, including follow-up for vital status. Each registry is the owner of its own data, so specific approval from registries is required for collaborative studies involving cancer registry data. The network has a specific protocol, with a description of including criteria, data format, and checks (for detailed information see http://www.registri-tumori.it/cms/files/2010.pdf).

DEFINITIONS

DATA

Survival analysis included data from each cancer registry for all tumours in cancer patients aged from fifteen upward, diagnosed from 1994 to 2011. Follow-up for death to the end of 2013 was required for all cancer registries. For the Salerno cancer registry, follow-up for death was available up to the end
POOL DEI REGISTRI TUMORI

Per garantire la massima rappresentatività geografica, l’omogeneità interna della casistica analizzata e la produzione delle stime di sopravvivenza più aggiornate in base ai dati disponibili, sono stati costituiti quattro raggruppamenti (Pool) della casistica complessivamente reclutata:

- **Pool della coorte.** A questa analisi hanno contribuito 42 Registri Tumori con disponibilità di dati di incidenza dal 2005 al 2009;
- **Pool della sopravvivenza condizionata.** Ha considerato i casi incidenti negli anni dal 2000 al 2010. I 24 Registri coinvolti sono stati quelli con disponibilità di dati almeno nel periodo 2002-2008;

Rispetto al precedente avente per oggetto la sopravvivenza,1 l’attuale rapporto AIRTUM è caratterizzato da una maggior numerosità della casistica analizzata e una migliore rappresentatività geografica: i Registri generali indagati nell’analisi di coorte 2005-2009 sono passati da 29 a 42 (in particolare quelli attivi nel meridione da 8 a 14), i Registri generali indagati nell’analisi del trend da 11 a 17.

SEDI TUMORALI

CLASSIFICAZIONE

CRITERI DI SELEZIONE

Sono stati inclusi nell’analisi tutti i tumori primitivi maligni, ad eccezione dei carcinomi cutanei. Vengono quindi considerati eleggibili per uno stesso soggetto anche i tumori di un secondo sito. Di seguito di seguito vengono riportati i criteri di selezione utilizzati per l’inclusione dei dati nel pool dei registri tumorali.

Continua a pagina 211 ▷

POOLS OF CANCER REGISTRIES

In order to maximize the use of descriptive data and provide data consistency and the most up-to-date survival estimates, four different groups (pools) of cancer registries were defined according to type of analysis:

- **Cohort pool.** Cases diagnosed from 2005 to 2009 from 42 cancer registries were included in this analysis;
- **Time trend pool.** Incident cases from 1994 to 2011 were recruited. Data from 17 cancer registries, which had – at least – data from 1996 to 2009, were selected;
- **Conditional survival pool.** For this analysis, we considered cases diagnosed from 2000 to 2010; 24 cancer registries having data at least from 2002 to 2008 were included;
- **Life expectancy pool.** Cases diagnosed from 1994 to 2010 were selected. Cancer registries had to have – at least – data from 1996 to 2008. Therefore, in addition to data from 17 registries in the time trend pool, this selection made it possible to consider the long-term series of data from the Florence cancer registry, updated to 2008 as last incidence year.

In Table 2, we provide details on each type of analysis and incidence years by cancer registry. Compared with the previous AIRTUM publication on survival,1 both cohort size and geographic coverage have grown: the number of general cancer registries included in 2005-2009 cohort studies increased from 29 to 42 (registries from southern Italy, in particular, increased from 8 to 14), while registries included in the time trend analysis increased from 11 to 17.

CANCER SITES

CLASSIFICATION

Topography, morphology, and tumour behaviour are defined according to the third edition of the International Classification of Diseases for Oncology (ICD-O-3), published in 2000.2 The criteria adopted for defining the cancer sites, the same as in the 2011 AIRTUM monograph, are shown in Table 3.

DATA SELECTION

All primary malignant tumours were included in the analysis, except non-melanomatous skin carcinomas. Thus multiple primaries were considered eligible for the analysis, in contrast with previous AIRTUM and EUROCRAB protocols.3-4 Cancers notified by death certificate only or by autopsy only (i.e., with date of diagnosis equal to date of death) were excluded. All other cases identified very close to the date of death were included in the data analysis, including patients with autopsy made after clin-
<table>
<thead>
<tr>
<th>CANCER REGISTRY</th>
<th>YEARS OF INCIDENCE</th>
<th>ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>COHORT</td>
</tr>
<tr>
<td>Bergamo</td>
<td>2007-2009</td>
<td>19,677</td>
</tr>
<tr>
<td>Biella-Vercelli</td>
<td>1995-2010</td>
<td>11,156</td>
</tr>
<tr>
<td>Brescia</td>
<td>2000-2008</td>
<td>26,894</td>
</tr>
<tr>
<td>Como</td>
<td>2005-2009</td>
<td>17,611</td>
</tr>
<tr>
<td>Cremona</td>
<td>2005-2009</td>
<td>12,393</td>
</tr>
<tr>
<td>Genova</td>
<td>2000-2009</td>
<td>34,044</td>
</tr>
<tr>
<td>Lodi</td>
<td>2005-2009</td>
<td>7,272</td>
</tr>
<tr>
<td>Mantova</td>
<td>2000-2010</td>
<td>13,366</td>
</tr>
<tr>
<td>Milano</td>
<td>2000-2009</td>
<td>46,888</td>
</tr>
<tr>
<td>Milano I</td>
<td>2007-2009</td>
<td>27,115</td>
</tr>
<tr>
<td>Monza e Brianza</td>
<td>2007-2009</td>
<td>15,371</td>
</tr>
<tr>
<td>Pavia</td>
<td>2005-2009</td>
<td>18,663</td>
</tr>
<tr>
<td>Piacenza</td>
<td>2006-2009</td>
<td>8,591</td>
</tr>
<tr>
<td>Sondrio</td>
<td>2005-2009</td>
<td>5,660</td>
</tr>
<tr>
<td>Torino</td>
<td>1994-2011</td>
<td>31,185</td>
</tr>
<tr>
<td>Varese</td>
<td>1994-2011</td>
<td>26,502</td>
</tr>
<tr>
<td>Alto Adige</td>
<td>1995-2010</td>
<td>13,355</td>
</tr>
<tr>
<td>Ferrara</td>
<td>1994-2011</td>
<td>15,393</td>
</tr>
<tr>
<td>Modena</td>
<td>1994-2011</td>
<td>23,165</td>
</tr>
<tr>
<td>Parma</td>
<td>1994-2011</td>
<td>15,814</td>
</tr>
<tr>
<td>Reggio Emilia</td>
<td>1996-2011</td>
<td>15,890</td>
</tr>
<tr>
<td>Romagna</td>
<td>1994-2011</td>
<td>43,924</td>
</tr>
<tr>
<td>Trento</td>
<td>1995-2010</td>
<td>13,517</td>
</tr>
<tr>
<td>Veneto</td>
<td>1994-2009</td>
<td>73,920</td>
</tr>
<tr>
<td>Firenze Prato</td>
<td>1994-2008</td>
<td>31,989</td>
</tr>
<tr>
<td>Latina</td>
<td>1994-2011</td>
<td>13,493</td>
</tr>
<tr>
<td>Umbria</td>
<td>1994-2011</td>
<td>28,887</td>
</tr>
<tr>
<td>Barletta</td>
<td>2006-2009</td>
<td>7,175</td>
</tr>
<tr>
<td>Brindisi</td>
<td>2006-2008</td>
<td>6,038</td>
</tr>
<tr>
<td>Catanza-Messina-Enna</td>
<td>2005-2009</td>
<td>45,218</td>
</tr>
<tr>
<td>Catanzaro</td>
<td>2005-2009</td>
<td>7,677</td>
</tr>
<tr>
<td>Lecce</td>
<td>2005-2008</td>
<td>16,845</td>
</tr>
<tr>
<td>Napoli</td>
<td>1996-2011</td>
<td>17,357</td>
</tr>
<tr>
<td>Nuoro</td>
<td>2005-2009</td>
<td>5,597</td>
</tr>
<tr>
<td>Palearmo</td>
<td>2005-2009</td>
<td>28,646</td>
</tr>
<tr>
<td>Ragusa-Caltanissetta</td>
<td>1994-2011</td>
<td>10,939</td>
</tr>
<tr>
<td>Salerno</td>
<td>1996-2009</td>
<td>23,864</td>
</tr>
<tr>
<td>Sassari</td>
<td>1994-2011</td>
<td>12,118</td>
</tr>
<tr>
<td>Siracusa</td>
<td>2000-2010</td>
<td>9,074</td>
</tr>
<tr>
<td>Taranto</td>
<td>2006-2009</td>
<td>11,959</td>
</tr>
<tr>
<td>Trapani</td>
<td>2002-2009</td>
<td>9,559</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>868,196</td>
</tr>
</tbody>
</table>

Table 2. Cancer cases (ages 15+), by type of analysis, and incidence years by cancer registry.
<table>
<thead>
<tr>
<th>MAJOR SITE</th>
<th>CANCER SITE</th>
<th>TOPOGRAPHY</th>
<th>MORPHOLOGY</th>
<th>BEHAVIOUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD AND NECK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongue</td>
<td>C019-C029</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mouth</td>
<td>C030-C069</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Oropharynx</td>
<td>C090-C109</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>C110-C119</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>C120-C139</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pharynx, NOS</td>
<td>C140-C148</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Nasal cavity etc.</td>
<td>C300-C319</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Larynx</td>
<td>C320-C329</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Salivary gland</td>
<td>C070-C089</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Oesophagus</td>
<td>C150-C159</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Stomach</td>
<td>C160-C169</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Small intestine</td>
<td>C170-C179</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Colon</td>
<td>C180-C189</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Rectum</td>
<td>C190-C218</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Liver</td>
<td>C220-C221</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Gallbladder and extrahepatic bile ducts</td>
<td>C239-C249</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pancreas</td>
<td>C250-C259</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>C339-C349</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>C400-C419</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Skin melanoma</td>
<td>C440-C449</td>
<td>8720-8780</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Mesothelioma</td>
<td>C600-C750</td>
<td>9050-9053</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kaposi sarcoma</td>
<td>C000-C809</td>
<td>9140</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Soft tissue</td>
<td>C470-C479, C490-C499</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>C500-C509</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cervix uteri</td>
<td>C530-C539</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Corpus uteri</td>
<td>C540-C549</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Ovary</td>
<td>C560</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Prostate</td>
<td>C619</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Testis</td>
<td>C620-C629</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Kidney</td>
<td>C649</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Other urinary system</td>
<td>C659-C669, C680-C689</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>C670-C679</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>C670-C679</td>
<td>8000-8010, 8120-8131</td>
<td>0-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain and CNS</td>
<td>C700-C729</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Choroid melanoma</td>
<td>C690-C699</td>
<td>8720-8780</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Thyroid</td>
<td>C739</td>
<td>8000-9044, 9060-9133, 9150-9581</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Acute lymphoblastic leukaemia</td>
<td>C000-C809</td>
<td>9650-9667</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chronic lymphoblastic leukaemia</td>
<td>C000-C809</td>
<td>9823, 9827</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Acute myeloid leukaemia</td>
<td>C420-C421, C424</td>
<td>9823</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Chronic myeloid leukaemia</td>
<td>C000-C809</td>
<td>9840, 9861, 9866-9874, 9891-9920, 9931</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Leukaemia, NOS</td>
<td>C000-C809</td>
<td>9733, 9742, 9800-9820, 9832-9834, 9860, 9930</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Tumour sites considered in the present report according to ICD-O-3 topography, morphology, and behaviour.
CASI PARTICOLARI
In considerazione dell’eterogeneità nella classificazione e nella registrazione del comportamento dei tumori della vescica e delle note problematiche che ne derivano, le analisi presentate per questa sede includono anche i papillomi e carcinomi a cellule squamose (8050-8052) sono state ricondotte al gruppo più idoneo (8120-8131) e pertanto incluse nell’analisi. I tumori a comportamento benigno e incerto del sistema nervoso centrale e/o in sede intracranica e che sono registrati in differenti modi e in modo diverso nella vescica (morfologie ICD-O-3: 8000-8010 e 8120-8131). Eventuali neoplasie non maligne papillari della vescica (morfologie ICD-O-3: 8000-8010 plus 8120-8131) Papillary non-malignant bladder neoplasms miscoded into spindle cell papillomas (8050-8052) were revised and coded according to the most appropriate category (8120-8131) and included in the analysis. Since intra-cranial and/or central nervous system cancers with benign or uncertain behaviour are registered in different ways, both temporally and spatially, they were excluded.

GENERAL POPULATION MORTALITY
To calculate the statistics presented in this monograph, an estimate of the expected survival of a general population group comparable with cases by age, sex, calendar time, and province of residence is required. Expected survival estimates are based on the tables of the annual probabilities of death in the general population made available by ISTAT (http://www.demo.istat.it).

METHODS
SURVIVAL INDICATORS
Survival statistics are intended to measure the probability of patients to live after a diagnosis of cancer. In this study, we present survival estimates at the population level, i.e., relevant to the survival of all cancer cases detected in a population living in areas covered by the Italian cancer registries, unlike the survival estimates of cancer cases enrolled in clinical trials involving patients with selected and often not representative characteristics. To measure survival after a cancer diagnosis it is necessary to consider that a cancer patient may die because of cancer or other causes of death (competing risks). Usually, reports show the survival probability after a diagnosis of cancer by eliminating the distortion arising from the chance of dying from other causes.

MATERIALI E METODI

MORTALITÀ DELLA POPOLAZIONE GENERALE
Per il calcolo delle statistiche presentate in questa monografia è necessario stimare la sopravvivenza attesa di un gruppo della popolazione generale comparabile con i casi per età, sesso, tempo di calendario e provincia di residenza. Le stime della sopravvivenza attesa sono basate sulle tavole delle probabilità annuali di morte della popolazione generale rese disponibili dall’ISTAT (http://www.demo.istat.it).

METODI

INDICATORI DI SOPRAVVIVENZA
Le statistiche di sopravvivenza hanno l’obiettivo di misurare la probabilità di vivere dei pazienti dopo una diagnosi di tumore successivi al primo. Sono stati invece esclusi i casi notificati dal solo certificato di decesso (DCO, Death Certificate Only – base di diagnosi 0) o autopsia (con diagnosi coincidente con la data di decesso). Gli altri casi identificati in vicinanza della data di morte sono stati inclusi compresa, quindi, quella parte di casistica su base autoptica per la quale è stato riconosciuto un precedente momento di diagnosi clinica. La sopravvivenza è stata calcolata per tutti i soggetti adulti di età uguale o superiore a 15 anni. L’inclusione dei tumori multipli nell’analisi comporta che un singolo paziente potrà essere conteggiato più volte sia in differenti analisi, in ragione della presenza di differenti tumori primitivi per lo stesso soggetto, sia all’interno della stessa analisi, quando questa raggruppì più sedi distinte o l’insieme di tutte le sedi oncologiche. La scelta effettuata in quest’ultimo caso è coerente con i criteri di inclusione dello studio. Va tuttavia sottolineato che questa impostazione costituisce un’ulteriore variazione rispetto al concetto di sopravvivenza basata sul paziente; quest’ultima comporta infatti l’inclusione di un solo evento diagnostico, generalmente il primo, per il medesimo soggetto.

ADDITIONAL CRITERIA
There are several issues related to the current use of different practices for coding behaviour of urinary bladder cancer, therefore the present publication includes non-malignant bladder transitional cell papillomas and carcinomas (ICD-O-3 morphologies: 8000-8010 plus 8120-8131). Papillary non-malignant bladder neoplasms miscoded into spindle cell papillomas (8050-8052) were revised and coded in the 8120-8131 category and included in the analysis. Since intra-cranial and/or central nervous system cancers with benign or uncertain behaviour are registered in different ways, both temporally and spatially, they were excluded.

METHODS

SURVIVAL INDICATORS
Survival statistics are intended to measure the probability of patients to live after a diagnosis of cancer. In this study, we present survival estimates at the population level, i.e., relevant to the survival of all cancer cases detected in a population living in areas covered by the Italian cancer registries, unlike the survival estimates of cancer cases enrolled in clinical trials involving patients with selected and often not representative characteristics. To measure survival after a cancer diagnosis it is necessary to consider that a cancer patient may die because of cancer or other causes of death (competing risks). Usually, reports show the survival probability after a diagnosis of cancer by eliminating the distortion arising from the chance of dying from other causes.

MATERIALI E METODI

MORTALITÀ DELLA POPOLAZIONE GENERALE
Per il calcolo delle statistiche presentate in questa monografia è necessario stimare la sopravvivenza attesa di un gruppo della popolazione generale comparabile con i casi per età, sesso, tempo di calendario e provincia di residenza. Le stime della sopravvivenza attesa sono basate sulle tavole delle probabilità annuali di morte della popolazione generale rese disponibili dall’ISTAT (http://www.demo.istat.it).

METODI

INDICATORI DI SOPRAVVIVENZA
Le statistiche di sopravvivenza hanno l’obiettivo di misurare la probabilità di vivere dei pazienti dopo una diagnosi di tumore successivi al primo. Sono stati invece esclusi i casi notificati dal solo certificato di decesso (DCO, Death Certificate Only – base di diagnosi 0) o autopsia (con diagnosi coincidente con la data di decesso). Gli altri casi identificati in vicinanza della data di morte sono stati inclusi compresa, quindi, quella parte di casistica su base autoptica per la quale è stato riconosciuto un precedente momento di diagnosi clinica. La sopravvivenza è stata calcolata per tutti i soggetti adulti di età uguale o superiore a 15 anni. L’inclusione dei tumori multipli nell’analisi comporta che un singolo paziente potrà essere conteggiato più volte sia in differenti analisi, in ragione della presenza di differenti tumori primitivi per lo stesso soggetto, sia all’interno della stessa analisi, quando questa raggruppì più sedi distinte o l’insieme di tutte le sedi oncologiche. La scelta effettuata in quest’ultimo caso è coerente con i criteri di inclusione dello studio. Va tuttavia sottolineato che questa impostazione costituisce un’ulteriore variazione rispetto al concetto di sopravvivenza basata sul paziente; quest’ultima comporta infatti l’inclusione di un solo evento diagnostico, generalmente il primo, per il medesimo soggetto.
more. Diversamente dalle stime di sopravvivenza dei malati di tumore arruolati in studi clinici riguardanti pazienti con caratteristiche selezionate e spesso non rappresentative della totalità dei casi, in questa monografia presentiamo stime di sopravvivenza a livello di popolazione che riguardano la sopravvivenza di tutti i casi di tumore rilevati nella popolazione residente nelle aree coperte dai Registri Tumori italiani.6 Per misurare la sopravvivenza dopo una diagnosi di tumore è necessario considerare che un paziente affetto da tumore può morire a causa del tumore o per altre cause di morte (cause competitive). In genere si riporta la probabilità di sopravvivere dopo una diagnosi di tumore eliminando la distorsione derivante dalla possibilità di morire per altre cause. Tale statistica, indicata come sopravvivenza netta, è una stima ideale quando lo scopo è confrontare la sopravvivenza dopo una diagnosi di tumore tra popolazioni o periodi temporali perché esclude che le differenze eventualmente riscontrate possano essere attribuite a variabili di riesame del rischio di morte per cause diverse dal cancro. Tuttavia, pazienti e clinici sono maggiormente interessati a conoscere le chance reali di sopravvivenza dopo una diagnosi di tumore e più in dettaglio la probabilità di morire a causa del tumore, la probabilità di morire per altre cause e la probabilità di restare in vita. Un altro tipo di statistica, indicata come probabilità reale (in inglese crude probability) di morte, stima queste probabilità. Diversamente dalla sopravvivenza netta, la probabilità reale di morte è calcolata in modo da tener conto del fatto che la morte per altre cause impedisce di morire a causa del tumore.7 Tale azione competitiva delle altre cause di morte determina una riduzione del numero di morti attribuibili al cancro e conseguentemente della probabilità di morire per questa causa. La probabilità reale di morte è perciò una stima adatta a livello individuale per le valutazioni prognostiche e a livello di popolazione per indicazioni sull’allocazione di risorse in cui è necessario considerare che la morte per altre cause può precludere di sperimentare i benefici di un intervento sul cancro.5

POOL DELLA COORTE (42 REGISTRI TUMORI)
Con i casi inclusi in questo pool (anni di diagnosi 2005-2009) sono state calcolate la sopravvivenza netta standardizzata per età e la probabilità reale di morte a 5 anni dalla diagnosi. La sopravvivenza netta è stata calcolata applicando il metodo di Pohar Perme. Questo metodo stima la sopravvivenza netta pesando ciascuna osservazione per l’inverso della sua sopravvivenza attesa.8 In questo studio le stime della sopravvivenza attesa sono basate sulle tavole di mortalità ISTAT specifiche per provincia in cui opera il Registro, stratificate per età, sesso e anno di calendario. Il calcolo dello stimatore di Pohar Perme, originariamen-

other causes. This statistic, called net survival, is an ideal estimate when the purpose is to compare survival after a diagnosis of cancer among populations or time periods, because it prevents any possible differences from being attributed to changes in the risk of dying from causes other than cancer. However, patients and clinicians are more interested in knowing the real chances of survival after a diagnosis of cancer and, more in detail, the probability of dying from cancer, the probability of dying from other causes, and the probability of staying alive. Another type of statistic, called crude probability of death, estimates these probabilities. Unlike net survival, the crude probability of death is calculated to take account of the fact that death from other causes prevents patients from dying from cancer.7 The competitive action of other causes of death leads to a reduction in the number of deaths from cancer and consequently in the probability of dying from this cause. Therefore, crude probability of death represents at the individual level an appropriate measure for prognostic assessment and at population level may provide clues for resource allocation, which requires consideration of the fact that death from other causes may preclude from experiencing the benefits of an intervention on cancer.6

COHORT POOL (42 CANCER REGISTRIES)
With the cases included in this pool (years of diagnosis 2005-2009), we estimated age-standardized 5-year net survival and 5-year crude probability of death. Net survival was calculated by applying the Pohar Perme method. This method estimates net survival by weighing each observation by the inverse of its expected survival.8 In this study, the expected survival estimates are based on the life tables provided by the Italian Institute of Statistics (ISTAT) for each province where a cancer registry operates, stratified by age, sex, and calendar year. The calculation of the Pohar Perme estimator, originally developed for continuous survival times, was later adapted to the actuarial approach, in which the estimate is made by dividing survival time into intervals. This approach, implemented in the stsr STATA function, was used for the estimates shown in this monograph.9 For computation, the interval width of one month was specified. When survival estimates are compared between groups, we have to consider that the Pohar Perme method does not take into account the different distribution by age at diagnosis of cases in each group. Therefore, net survival was age-standardized by using weights of the International Cancer Survival Standard (ICSS) referring to five age classes.10 In the previous AIRTUM monograph on Italian cancer survival, published in 2011, net survival was estimated by the Ederer II method.11 Therefore, the use of the Pohar Perme method is an innovation introduced after significant progress in the understanding and estimation of net survival in re-
I tumori in Italia: Rapporto AIRTUM 2016 - sopravvivenza

MATERIALI E METODI

Ulteriori dati disponibili sul sito: www.registri-tumori.it

I tumori in Italia: Rapporto AIRTUM 2016 - sopravvivenza

Nella precedente monografia AIRTUM dedicata alla sopravvivenza dei malati oncologici in Italia, pubblicata nel 2011, la sopravvivenza netta è stata stimata adoperando il metodo di Ederer II.1,11 L’uso del metodo di Pohar Perme è quindi una innovazione introdotta in seguito all’impor-
tante progresso nella comprensione e nella stima della so-
pravvivenza netta di questi ultimi anni.12 Si può riassu-
are sull’impatto pratico di tale innovazione poiché, dopo la standardizzazione per età, le stime della sopravvivenza a 5 anni ottenute con il metodo di Pohar Perme si discostano in modo trascurabile da quelle ottenute con il metodo di Ederer II.1,11 Per questo è possibile comparare validamen-
te le stime standardizzate di sopravvivenza ottenute con il metodo di Pohar Perme con quelle ottenute con il metodo di Ederer II riportate in altre pubblicazioni.15 In questa esperienza la differenza media tra le stime ottenute con i due metodi, calcolata su tutte le sedi esaminate, è risultata uguale a 0,08% con un minimo e un massimo compresi tra -0,55% e 0,55%. Inoltre, per completare la documentazio-
ne, le tabelle disponibili online come materiale supplementare della monografia includono anche le stime di sopravi-
venza ottenute con il metodo di Ederer II.12

Sulla base della suddivisione del territorio italiano in ripartizioni geografiche adoperata dall’ISTAT sono stati definiti i seguenti accorpamenti di Registri: Nord-Ovest, Nord-Est, Centro e Sud (Tabella 2). La sopravvivenza netta standard-
dizzata a 5 anni è stata calcolata per ciascuna di queste aree. Stime della sopravvivenza netta standardizzata a 5 anni dal-
la diagnosi sono state ottenute per 11 regioni italiane in cui la popolazione interessata dalla registrazione dei tumori su-
pera il 40% del totale. Per il Piemonte e la Toscana la re-
gistrazione è inferiore (rispettivamente 29% e 33%) e ri-
guarda prevalentemente la popolazione residente in centri urbani. Le stime di sopravvivenza di Piemonte e Toscana sono perciò meno rappresentative della sopravvivenza di tutti i casi di tumore diagnosticati nella popolazione rispet-
to alle stime delle altre 11 regioni dove la registrazione dei cent years.12 We can be reassured as to the practical impact of this innovation because after age-standardization differences between 5-year survival estimates obtained using the Pohar Perme and Ederer II methods are negligible.13,14 Therefore, we can validly compare the Pohar Perme standardized sur-
vival estimates with the Ederer II estimates in other publica-
tions.15 In this experience, the average difference between the estimates obtained by the two methods, on all examined can-
cer sites, was 0.08%, ranging from -0.55% to 0.55%. In ad-
dition, for the sake of documentation, tables available as on-
line supplements of the monograph include Ederer II survival. According to the ISTAT partition of the Italian country into geographical areas, cancer registries have been gathered at fol-
low: North-West, North-East, Centre, and South (Table 2). Standardized net 5-year survival was calculated for each of these areas.

Estimates of standardized net 5-year survival after diagnosis were also computed for 11 Italian regions where the population covered by cancer registration exceeds 40% of the total. In Piedmont and Tuscany the proportion is lower, respectively 29% and 33%, and cancer registration mainly concerns the population living in large urban centres. As a result, survival estimates of Piedmont and Tuscany are less representative of the survival of all cancer cases diagnosed in the population compared to the estimates of the other 11 regions where cancer registration is more widespread. Thus, as they need to be con-
sidered more cautiously, the estimates of Piedmont and Tusca-
ny have been labelled with an “*” in the funnel plots (cancer-
specific data sheets, pp. 70-191). In Lazio, the cancer registry of Latina is active, and in Calabria the cancer registry of Cat-
anzano is active. Data of these two registries were not used for the regional estimates, as the regional coverage of cancer regis-
tration is still low (Table 1). As a result, data from 40 cancer registries are included in this analysis.

Net survival of cancer cases diagnosed in the 13 regions spec-
ified above was compared using a funnel plot as a graphical tool.16 In this graph, net survival is on the y-axis and the pre-
cision of the estimate on the x-axis. Since the precision of the estimate, computed as the inverse of the net survival variance, has poorly interpretable values, we preferred to show on the x-
axis only “Low” at the left end and “High” at the right end, to indicate the growing sense of precision from the left to the right side of the plot.

The funnel plot shows the following: the set of regional esti-
mates forming a scatter plot, a solid horizontal line as refer-
ence value of the regional estimates taken as the average of the individual values and four control lines to indicate how much the reference value may randomly vary depending on the pre-
cision of its estimation. The control lines have a funnel shape, wider in the left part of the graph and progressively narrow-
ting toward the right side. This aspect emphasizes the greater
La sopravvivenza netta dei casi di tumore diagnosticati nelle 13 regioni sopra specificate è stata confrontata utilizzando il funnel plot come strumento di rappresentazione.16 In questo grafico la sopravvivenza netta è sull'asse delle ordinate e la precisione di tale stima sull'asse delle ascisse. Poiché la precisione della stima, calcolata come inverso della varianza della sopravvivenza netta, assume valori scarsamente interpretabili si è preferito riportare sull'asse delle ascisse solo l'indicazione «Low» all'estremo sinistro e «High» all'estremo destro per indicare il senso crescente della precisione procedendo nel grafico da sinistra verso destra. Nel funnel plot sono indicate: tutte le stime regionali come in un diagramma di dispersione, una linea orizzontale di riferimento in corrispondenza della sopravvivenza media calcolata all'insieme delle stime regionali e quattro linee di controllo per indicare di quanto il valore di riferimento può variare casualmente in funzione della precisione con cui è stimato. Le linee di controllo hanno una forma a imbuto essendo più larghe nella parte sinistra del grafico e progressivamente più strette verso la parte destra. Questo aspetto sottolinea la maggiore variabilità delle stime meno precise riportate nella parte sinistra e la minore variabilità di quelle più precise riportate a destra. Una stima che appartiene all'esterno delle linee di controllo più distanti dalla linea orizzontale (linee rosse nei grafici) differisce dal valore di riferimento con una probabilità superiore al 99,8%. Una stima all'esterno delle linee di controllo più vicine alla linea orizzontale (linee blu nei grafici) differisce dal valore di riferimento con una probabilità superiore al 95%. In questo modo è possibile rilevare insieme lo scostamento di un'osservazione dal parametro di riferimento e la random variation of the estimate. In the funnel plot, regions are identified by a 3-letter code, followed by an asterisk for Piedmont and Tuscany. This graph is preferable to representing differences with a horizontal bar graph, commonly referred to as a caterpillar plot, since the latter shows a confidence interval for each estimate encouraging the comparison of each with the reference value, without taking into account the problem of multiple comparisons. Instead, the funnel plot only considers the variability of the reference value and shows how only this value can vary within progressively wider limits as long as the precision of its measurement decreases. This approach directs toward a better assessment of whether the value of a single estimate, in this case the survival estimate of a particular region, significantly differs from a reference value. In addition, the horizontal bar diagram furthers an erroneous interpretation of lack of differences between two estimates whose confidence intervals overlap and, ordering the values from lowest to highest, spuriously attributes a rank to individual observations.16,19

The crude probability of death from cancer, given the chance of dying from other causes, can be computed from the all-cause survival probability and the cancer-specific mortality rate.20-21 Specific methods have been developed to estimate crude probability of death from cancer, in the presence of other causes, without the use of cause of death information.22-23 In this monograph, such an approach has been used by applying a flexible parametric model. This model fits to data the mortality of cancer cases in excess to mortality of a reference population computed from rates in the above-mentioned ISTAT mortality tables. Restricted cubic splines have been used to model the logarithm of time with 5 degrees of freedom, the age at diagnosis with 4 degrees of freedom and 2 more degrees of freedom to modify the effect of this variable during the follow-up time (time-dependent effect).24 After adapting this model to data for each cancer site, given, where appropriate, each gender, we obtained the crude probabilities of dying from cancer and other causes estimated by the model, specific for age and time from diagnosis. It must be emphasized that, by increasing age at diagnosis, the competitive effect of other causes of death in reducing the actual chance of dying from cancer becomes progressively more evident. Therefore, it is important to assess
La probabilità reale di morte per cancro, tenuto conto della possibilità di morire per altre cause, può essere calcolata a partire dalla probabilità di sopravvivere per tutte le cause e dal tasso di mortalità specifico per il cancro. Metodi specifici sono stati sviluppati per stimare la probabilità reale di morte per il cancro, in presenza di altre cause, senza fare uso dell’informazione sulla causa di morte. In questa monografia si è usato un approccio di questo tipo applicando un modello parametrico flessibile. Questo modello adatta ai dati la mortalità dei casi di tumore in eccesso rispetto alla mortalità di una popolazione di riferimento calcolata in base ai tassi nelle sopra menzionate tavole di mortalità dell’ISTAT. Con spline cubiche ristrette si è modellato il logaritmo del tempo di osservazione con 5 gradi di libertà, l’età alla diagnosi con 4 gradi di libertà e 2 gradi di libertà per la modifica dell’effetto di questa variabile durante il tempo di osservazione (efetto tempo-dipendente). Dopo aver adattato questo modello ai dati per ogni tipo di tumore e, nelle sedi distinte per genere, si sono ottenute le probabilità reali di morire che, all’aumentare dell’età alla diagnosi dei casi, diventa progressivamente più evidente l’effetto competitivo delle altre cause di morte nel ridurre la probabilità reale di morire a causa del tumore. Per questo è importante valutare insieme la probabilità reale di morte per il cancro e per le altre cause al variare dell’età alla diagnosi dei casi. Rispetto ad altri metodi il modello applicato ha il vantaggio di poter studiare tale relazione in dettaglio. Si è quindi rappresentato in un grafico l’andamento della probabilità reale di morte per il cancro e per le altre cause stimate dal modello a 5 anni dalla diagnosi rispetto all’età dei casi. Il riferimento temporale a 5 anni dalla diagnosi è stato scelto essendo il più diffuso indicatore prognostico a breve termine.

POOL DEL TREND TEMPORALE (17 REGISTRI TUMORI)

La sopravvivenza netta standardizzata a 5 e 10 anni dalla diagnosi è stata calcolata per i trienni 1994-1996, 1997-2001, 2002-2005, 2006-2009 e 2010-2013. Il trend temporale è stato dettagliato per genere e per ogni tipo di tumore, e il prospetto della sopravvivenza netta diagnostica rappresenta la crescita di queste curve tempozionali se poste dietro di esse. L’interpretazione della funzione di sopravvivenza netta standardizzata a 5 e 10 anni è una misura della mortalità dei tumori in base alla mortalità di un gruppo di soggetti standardizzati e rappresenta una misura di quantità di rischio per la mortalità di cancro. La sopravvivenza netta standardizzata a 5 e 10 anni non include i casi di morte per cause non correlate al tumore e per questo, per età e tempo dalla diagnosi. E’ necessario considerare insieme la probabilità reale di morte per il cancro e per le altre cause stimate dal modello, in particolare come la mortalità per cancro e per le altre cause varia according to age of cases at diagnosis. Compared to other methods, the applied model has the advantage of being able to study this relationship in detail. Therefore, a graph was prepared, showing the trend of 5-year crude probabilities of death from cancer and from other causes, estimated by the model, with respect to the age of cases. Five-year time reference was chosen, as it is the most widely used short-term prognostic indicator.

TIME TREND POOL (17 CANCER REGISTRIES)

Five- and ten-year age-standardized net survival were computed for the following three-year periods: 1994-1996, 1997-1999, 2000-2002, 2003-2005, 2006-2008, and 2009-2011. We selected cases diagnosed in each three-year period and computed net survival by applying the cohort approach when it was possible to follow cases for the entire time of observation. Since for the most recent three-year periods cases cannot be followed for 5 or 10 years from diagnosis, a prediction of net survival at 5 or 10 years was obtained using a hybrid approach. Figure 2 shows an example of the hybrid approach calculation of 10-year net survival for cases diagnosed in 2006-2008 and followed up until the end of 2013. From the figure, we see that the survival experience of cases diagnosed in 2006-2008, followed up to 5-7 years after diagnosis, and the survival experience of cases diagnosed from 2001 to 2005 to complete the observation time up to 10 years after diagnosis both contribute to the survival estimate. However, the cases diagnosed before 2006 contribute to estimation only from some time after diagnosis (left truncation) in a time window from 2011 to 2013.

As further examples, let us consider cases diagnosed in 2003-2005 and 2009-2011. The former are followed for 8-10 years and the latter for 2-4 years until 2013. To complete the calculation of survival 10 years after diagnosis, we used the survival experience of cases diagnosed in 2001 and 2002 for the former, and the survival experience of cases diagnosed from 2001 to 2008 for the latter. However, cases diagnosed in recent years contribute to the estimation only with the experience included in the observation window between 2011 and 2013. Several studies showed that, by applying this technique of computation, we obtain good predictions of the survival measured later, when the follow-up has been completed. In the graph showed in the cancer-specific data sheets (pp. 70-191, survival estimates are connected by a solid line when computed with the cohort approach, by a dashed line when computed with the hybrid approach. The former are based on the follow-up of cases until 5 or 10 years from diagnosis, while the latter are predictions of 5- and 10-year net survival whose precise value will be measured in the future, when that number of years from diagnosis has elapsed.

POOL DELLA SOPRAVVIVENZA CONDIZIONATA (24 CANCER REGISTRIES)

La sopravvivenza netta condizionata $CS_{x,y}$ rappresenta la probabilità di una coorte di pazienti, che è già sopravvissuta x anni dopo la diagnosi, di sopravvivere ulteriori y anni. Si può calcolare con la semplice formula:29

$$CS_{x,y} = \frac{RS_{x+y}}{RS_x}$$

Condizionale survival was age-standardized with the ICCS weights as mentioned above.

LIFE EXPECTANCY POOL (18 CANCER REGISTRIES)

Another overall measure of survival is average survival, or life expectancy. In particular, the comparison between the life expectancy of the general population and that of cancer patients is useful to understand what a cancer diagnosis entails in terms of reduction in life expectancy at the individual level and to quantify the cancer burden at the population level. In a cohort of cancer patients, the calculation of life expectancy requires a full all-cause survival curve of cancer patients, that is, survival until everyone has died, and this makes it necessary to follow cases for a very long time after diagnosis. A recent methodological study demonstrated that reliable estimates of life expectancy can be obtained even with a limited follow-up, breaking up mortality from all causes into excess mortality due to cancer and expected mortality in the general population free of the disease un-
La sopravvivenza condizionata viene standardizzata per età, secondo la stessa modalità descritta precedentemente, per consentire un più agevole confronto per ripartizione geografica.

POOL DELLA SPERANZA DI VITA (18 REGISTRI TUMORI)

Un’altra misura complessiva della sopravvivenza è la sopravvivenza media o speranza di vita. In particolare il confronto tra la speranza di vita della popolazione generale e quella dei pazienti affetti da un tumore è utile per comprendere cosa comporti una diagnosi di cancro in termini di riduzione dell’aspettativa di vita a livello individuale e per quantificare il cancer burden a livello di popolazione. In una coorte di pazienti neoplastici il calcolo della speranza di vita richiede la stima di curva di sopravvivenza per tutte le cause dopo aver osservato tutti i soggetti dalla diagnosi fino alla morte e questo rende necessario seguire i casi per un tempo molto lungo. Un recente studio metodologico ha dimostrato la possibilità di ottenere stime affidabili della speranza di vita anche con un periodo di osservazione dei casi più limitato scomponendo la mortalità per tutte le cause di vita attesa oltre tale data è stata chiesta e ottenuta dallo stesso Istituto.31 Expected mortality beyond that date, predictions of expected mortality rates up to 2065, stratified by region, sex, age and calendar year, were sought and obtained from the same Institute.31 Expected mortality rates until 2065 were attributed to individual cases as previously described, i.e., taking aging and changing of rates over calendar years into account. At the time of this contribution, ISTAT makes available mortality tables, stratified by province, gender, age, and calendar year, until 2013. To extrapolate the expected mortality beyond that date, predictions of expected mortality rates up to 2065, stratified by region, sex, age and calendar year, were sought and obtained from the same Institute.31 Expected mortality rates until 2065 were attributed to individual cases as previously described, i.e., taking aging and changing of rates over calendar years into account. This method of extrapolation of the expected mortality seemed preferable to the assumption that the population rates will stay the same from 2013 onwards.32

Aiming to produce the most up-to-date estimates of life expectancy, we used a hybrid approach in the analysis.33-34 Thus, we considered the survival experience of cases diagnosed in the years 2006-2010 from the date of diagnosis and the survival experience of cases diagnosed from 1994 to 2005 only from the beginning of 2009, so that, for each follow-up time, 5-year information on incident cases is available. The Florence cancer registry contributed to this analysis with incident cases in three years, from 2006 to 2008 (Table 2). For the data of this registry, we considered the survival experience of cases diagnosed from 1994 to 2005, but only from the beginning of 2011, so that, for each follow-up time, 3-year information on incident cases is available. All cases were followed until the earlier date between the date of death, 31 December 2013, and the end of 15 years of follow-up after diagnosis. For each cancer site and, where appropriate, for each gender, we fit a flexible parametric model. The model uses restricted cubic splines to fit the logarithm of the follow-up time with 8 degrees of freedom, the age at diagnosis with 4 degrees of freedom and an additional 2 degrees to model the time-dependent effect of this variable. Estimates of life expectancy refer to cases 40 or more year-old at diagnosis to reduce the time period in which we need to ex-

\[
CS_{x,y} = \frac{RS_{x+y}}{RS_x}
\]

Epidemiol Prev 2017; 41 (2) suppl1. doi: 10.19191/EP17.2S1.P001.017

Utteri dati disponibili sul sito: www.registri-tumori.it
so l’Istituto per la elaborazione di previsioni della mortalità attesa fino al 2065, stratificate per regione, sesso, età e anno di calendario.31 Tassi di mortalità della popolazione generale previsti fino al 2065 sono stati attribuiti ai singoli casi con la stessa modalità sopra descritta, tenendo conto della variazione dei tassi a causa dell’invecchiamento e del cambiamento degli anni di calendario. Tale modalità di estrapolazione della mortalità attesa è sembrata preferibile a quella di considerare che la mortalità della popolazione restasse la stessa dal 2013 in poi.32

Con l’intento di produrre le stime più aggiornate della speranza di vita l’analisi ha utilizzato un approccio ibrido.33,34 È stata perciò considerata l’esperienza di sopravvivenza dei casi diagnosticati negli anni dal 2006 al 2010 a partire dalla data di diagnosi e l’esperienza di sopravvivenza dei casi diagnosticati dal 1994 al 2005, ma solo a partire dall’inizio del 2009 in modo tale che, per ogni tempo di osservazione, sia disponibile l’informazione dei casi incidenti in 5 anni. Il Registro di Firenze ha potuto contribuire a questa analisi con i casi incidenti in tre anni, dal 2006 al 2008 (Tabella 2). Per i dati di questo Registro si è considerata l’esperienza di sopravvivenza dei casi diagnosticati dal 1994 al 2005 a partire dall’inizio del 2011 in modo tale che, per ogni tempo di osservazione, sia disponibile l’informazione dei casi incidenti in tre anni. Tutti i casi sono stati seguiti fino alla prima tra la data del decesso, il 31 dicembre 2013 e la conclusione di 15 anni di osservazione dalla diagnosi. Per ciascuna sede di tumore e, nelle sedi con distinzione di genere, per ciascun genere è stato adattato un modello parametrico flessibile. Si è modellato con spline cubiche ristrette il logaritmo del tempo di osservazione con 8 gradi di libertà, l’età alla diagnosi con 4 gradi di libertà e ulteriori 2 gradi per l’effetto tempo-dipendente di questa variabile. Per ridurre il periodo di tempo in cui è necessario estrapolare il tasso in eccesso dopo i 15 anni di follow-up disponibili e migliorare le previsioni ottenute dal modello, le stime della speranza di vita hanno riguardato i casi con 40 o più anni alla diagnosi, ad eccezione dei tumori del testicolo in cui si sono considerati i casi con 30 o più anni poiché una parte rilevante di casi interessa i giovani adulti.

STIME PUNTUALI, ERRORI STANDARD E INTERVALLI DI CONFIденZa

In questa monografia la sopravvivenza netta è stata stimata con il metodo di Pohar Perme utilizzando l’approccio attuariale. In base a questo approccio il tempo di osservazione è diviso in intervalli e si calcola per ciascuno di questi una stima della sopravvivenza netta intervallo-specifica. Nell’approccio di coorte la sopravvivenza netta per l’intervallo i è data da:

\[N_{S_i} = \exp \left(\log(1 - d_i^m) (n_i^m - c_i^m/2) \right. \]

\[\left. + \sum_{j=1}^{n_i} \left(\left(d_{ij} + c_{ij} \right) A_i/2 + (1 - d_{ij} - c_{ij}) a_{ij} \right) / S_i^m \right) \]

where \(d_{ij} \) and \(c_{ij} \) are indicators of death and censoring of the subject \(j \) in the interval \(i \), \(a_{ij} \) is the expected mortality rate of the subject \(j \) in the interval \(i \), \(S_i^m \) is the cumulative expected survival at mid-point of the interval, \(n_i^m \), \(d_i^m \), and \(c_i^m \) are the sum of at-risk subjects at the beginning of the interval, of the dead and censored subjects over the interval \(i \), weighted by the inverse of their expected survival, i.e.:

\[n_i^m = \sum_{j=1}^{n_i} n_{ij} / S_i^m \; ; \; d_i^m = \sum_{j=1}^{n_i} d_{ij} / S_i^m \; ; \; c_i^m = \sum_{j=1}^{n_i} c_{ij} / S_i^m \]

In the period and hybrid approach, interval-specific net survival is given by:

\[N_{S_i} = \exp \left(- k_i / \gamma_i^m \right) \]

where \(k_i \) is the width of the time interval \(i \), and \(\gamma_i^m \) is the sum of time-at-risk of each individual in the interval \(i \) weighted for the inverse of their expected survival, i.e.:

\[\gamma_i^m = \sum_{j=1}^{n_i} y_{ij} / S_i^m \]

Then, net survival at time \(t \) is computed as the product of interval-specific estimates until \(t \):

\[N_S(t) = \prod_{i=1}^{t} N_{S_i} \]

In the cohort approach, the standard error of net survival at the end of the interval \(t \) is estimated by:
I TUMORI IN ITALIA RAPPORTO AIRTUM 2016 SOPRAVVIVENZA

MATERIALI E METODI

Nella formula dell’errore standard è:35

\[SE(ES(t)) = \sqrt{\frac{\sum_{i=1}^{t} \frac{n_j}{\hat{S}_{ij}^{w}} \frac{d_{ij}/\hat{S}_{ij}^{w}}{(\hat{S}_{ij}^{w})^2}}{\left(n_j^w - (d_{ij}^w + c_{ij}^w)/2\right)^2}} \]

Age-standardized net survival at time t is the weighted average of age-specific survival computed in 5 age groups:

\[ASNS(t) = \sum_{k=1}^{5} w_k \cdot NS(t)_k \]

where \(w_k \) are weights, summing up to 1, specific for cancer and age groups as defined in the International Cancer Survival Standard (ICSS).10 Age-standardized estimates are not presented when one or more age-specific estimates cannot be computed due to early censoring or lack of cases. Minor adjustments were introduced, however, for mesothelioma (Table 4). The standard error of age-standardized net survival is calculated by the formula:36

\[SE(ASNS(t)) = \sqrt{\sum_{k=1}^{5} [w_k \cdot SE(ES(t)_k)]^2} \]

For regional survival estimates shown in the funnel plots, the standard error is computed by:

\[ES(ES(t)) = NS(t)^9 \sqrt{\sum_{i=1}^{t} \frac{n_j}{\hat{S}_{ij}^{w}} \frac{d_{ij}/\hat{S}_{ij}^{w}}{(\hat{S}_{ij}^{w})^2}} \]

where \(NS(t)^9 \) is net survival at time t of the pool of regional estimates.19 The inverse of the squared standard error corresponds to the precision of the estimate. Following the previous definition of conditional standardized net survival, standard error is estimated by:1,37

\[SE(CS_{xy}) = \sqrt{\frac{\text{Var}(NS_{xy}) - NS_{xy}^2 \cdot \text{Var}(NS_x)}{NS_x}} \]

Confidence intervals were calculated after a complementary log-log transformation. Therefore, they are always within the 0-100% range.

\[N_j = \exp \left(\log(1 - d_{ij}/n_j^w) - \frac{c_{ij}^w}{2} \right) \]

\[n_j^w = \sum_{j=1}^{n} n_j \hat{S}_{ij}^w \]

\[d_{ij}^w = \sum_{j=1}^{n} d_{ij}/\hat{S}_{ij}^w \]

\[c_{ij}^w = \sum_{j=1}^{n} c_{ij}/\hat{S}_{ij}^w \]

\[y_{ij}^w = \sum_{j=1}^{n} y_{ij}/\hat{S}_{ij}^w \]

\[N_j(t) = \prod_{i=1}^{t} N_j^i \]

Nell’approccio di periodo e ibrido la formula dell’errore standard è:35

\[ES(ES(t)) = NS(t) \sqrt{\sum_{i=1}^{t} \frac{d_{ij}/\hat{S}_{ij}^w}{(\hat{S}_{ij}^w)^2}} \]

\[SE(ES(t)) = \sqrt{\frac{\sum_{i=1}^{t} \frac{n_j}{\hat{S}_{ij}^{w}} \frac{d_{ij}/\hat{S}_{ij}^{w}}{(\hat{S}_{ij}^{w})^2}}{\left(n_j^w - (d_{ij}^w + c_{ij}^w)/2\right)^2}} \]

the period and hybrid approach, the standard error is35

\[ES(ES(t)) = NS(t) \sqrt{\sum_{i=1}^{t} \frac{k_i \cdot d_{ij}/\hat{S}_{ij}^w}{(\hat{S}_{ij}^w)^2}} \]

Age-standardized net survival at time t is the weighted average of age-specific survival computed in 5 age groups:

\[ASNS(t) = \sum_{k=1}^{5} w_k NS(t)_k \]

where \(w_k \) are weights, summing up to 1, specific for cancer and age groups as defined in the International Cancer Survival Standard (ICSS).10 Age-standardized estimates are not presented when one or more age-specific estimates cannot be computed due to early censoring or lack of cases. Minor adjustments were introduced, however, for mesothelioma (Table 4). The standard error of age-standardized net survival is calculated by the formula:36

\[SE(ASNS(t)) = \sqrt{\sum_{k=1}^{5} [w_k \cdot SE(ES(t)_k)]^2} \]

For regional survival estimates shown in the funnel plots, the standard error is computed by:

\[ES(ES(t)) = NS(t)^9 \sqrt{\sum_{i=1}^{t} \frac{n_j}{\hat{S}_{ij}^{w}} \frac{d_{ij}/\hat{S}_{ij}^{w}}{(\hat{S}_{ij}^{w})^2}} \]

where \(NS(t)^9 \) is net survival at time t of the pool of regional estimates.19 The inverse of the squared standard error corresponds to the precision of the estimate. Following the previous definition of conditional standardized net survival, standard error is estimated by:1,37

\[SE(CS_{xy}) = \sqrt{\frac{\text{Var}(NS_{xy}) - NS_{xy}^2 \cdot \text{Var}(NS_x)}{NS_x}} \]

Confidence intervals were calculated after a complementary log-log transformation. Therefore, they are always within the 0-100% range.

\[\text{dove} \ d_{ij} \ e \ c_{ij} \ \text{sono rispettivamente l’indicatore della \ morte e della censura del soggetto} \ j \ \text{nell’intervallo} \ i, \ \lambda_{ij} \ \text{è il tasso di mortalità atteso del soggetto} \ j \ \text{nell’intervallo} \ i, \ \hat{S}_{ij}^w \ \text{è la sopravvivenza cumulativa attesa alla metà dell’intervallo,} \ n_j^w, \ d_{ij}^w, \ \text{e} \ c_{ij}^w \ \text{corrispondono alla somma dei soggetti a rischio all’inizio dell’intervallo, morti e censurati nel corso dell’intervallo} \ i, \ \text{pesati per l’inverso della loro sopravvivenza attesa, i.e.:} \]

\[\text{dove} \ k_i \ \text{è l’ampiezza temporale dell’intervallo} \ i \ \text{e} \ y_{ij}^w \ \text{è la somma del tempo a rischio di ciascun individuo nell’intervallo} \ i \ \text{pesato per l’inverso della sua sopravvivenza attesa, i.e.:} \]

\[y_{ij}^w = \sum_{j=1}^{n} y_{ij}/\hat{S}_{ij}^w \]

La sopravvivenza netta al tempo t è quindi calcolata dal prodotto delle stime intervallo-specifiche fino a t:

\[NS(t) = \prod_{i=1}^{t} N_j^i \]

Nell’approccio di periodo e ibrido la formula dell’errore standard è:35

\[ES(ES(t)) = NS(t)^9 \sqrt{\sum_{i=1}^{t} \frac{k_i \cdot d_{ij}/\hat{S}_{ij}^w}{(\hat{S}_{ij}^w)^2}} \]

\[\text{dove} \ y_{ij}^w \ \text{è l’indicatore della mortalità e della censura del soggetto} \ j \ \text{nell’intervallo} \ i, \ \lambda_{ij} \ \text{è il tasso di mortalità atteso del soggetto} \ j \ \text{nell’intervallo} \ i, \ \hat{S}_{ij}^w \ \text{è la sopravvivenza cumulativa attesa alla metà dell’intervallo,} \ n_j^w, \ d_{ij}^w, \ \text{e} \ c_{ij}^w \ \text{corrispondono alla somma dei soggetti a rischio all’inizio dell’intervallo, morti e censurati nel corso dell’intervallo} \ i, \ \text{pesati per l’inverso della loro sopravvivenza attesa, i.e.:} \]

\[n_j^w = \sum_{j=1}^{n} n_j \hat{S}_{ij}^w \]

\[d_{ij}^w = \sum_{j=1}^{n} d_{ij}/\hat{S}_{ij}^w \]

\[c_{ij}^w = \sum_{j=1}^{n} c_{ij}/\hat{S}_{ij}^w \]

\[y_{ij}^w = \sum_{j=1}^{n} y_{ij}/\hat{S}_{ij}^w \]
La sopravvivenza netta standardizzata per età a un tempo t è calcolata dalla sopravvivenza dei casi aggregati in 5 classi di età:

$$ASNS(t) = \sum_{k=1}^{5} w_k NS(t)_k$$

dove w_k sono i pesi specifici per neoplasia e classe di età come definiti dall’International Cancer Survival Standard (ICSS). Non sono presentate stime di sopravvivenza standardizzata nel caso in cui precedenti censure o mancanza di casi non consentano di stimare la sopravvivenza netta in una o più classi di età. Nel caso del mesotelioma è stato definito una nuova classe di età 15-54 anni, in sostituzione delle classi 15-44 e 45-54, numericamente più esigue, mantenendone inalterato il peso complessivo (Tabella 4).

L’errore standard della sopravvivenza netta standardizzata per età è calcolato con la formula:

$$SE(ASNS(t)) = \sqrt{\sum_{k=1}^{5} w_k SE(NS(t)_k)^2}$$

Per le stime regionali della sopravvivenza netta, rappresentate nei funnel plot, l’errore standard è calcolato da:

$$ES(NS(t)) = NS(t) \sqrt{\sum_{i=1}^{t} \left(\frac{\sum_{j=1}^{n} d_{ij}/S_{ij}^2}{(n_j^2 - (d_j^w + c_j^w)/2)^2} \right)}$$

dove $NS(t)$ è la sopravvivenza netta al tempo t del pool delle stime regionali. L’inverso del quadrato dell’errore standard esprime il grado di precisione della stima regionale.

L’errore standard della sopravvivenza netta condizionata standardizzata, precedentemente definita, è stimato da:

$$SE(CS_{xy}) = \sqrt{\frac{Var(NS_{xy}) - NS_{xy}^2 Var(NS_x)}{NS_x}}$$

Table 4. Standard weights used to calculate age-standardized net survival. Modified standard weights are denoted by *.

<table>
<thead>
<tr>
<th>STANDARD</th>
<th>AGE GROUPS</th>
<th>WEIGHTS</th>
<th>CANCER SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15-44, 45-54, 55-64, 65-75, 75+</td>
<td>0.07, 0.12, 0.23, 0.29, 0.29</td>
<td>all (except those included in standard 1*, 2, 3, 4)</td>
</tr>
<tr>
<td>1*</td>
<td>15-54, 55-64, 65-75, 75+</td>
<td>0.19, 0.23, 0.29, 0.29</td>
<td>mesothelioma</td>
</tr>
<tr>
<td>2</td>
<td>15-44, 45-54, 55-64, 65-75, 75+</td>
<td>0.28, 0.17, 0.21, 0.20, 0.14</td>
<td>melanoma, cervix uteri, brain and CNS, thyroid</td>
</tr>
<tr>
<td>3</td>
<td>15-44, 45-54, 55-64, 65-75, 75+</td>
<td>0.60, 0.10, 0.10, 0.10, 0.10</td>
<td>testis, Hodgkin lymphoma, acute lymphocytic leukaemia</td>
</tr>
<tr>
<td>4</td>
<td>15-54, 55-64, 65-74, 75-84, 85+</td>
<td>0.19, 0.23, 0.29, 0.23, 0.06</td>
<td>prostate</td>
</tr>
</tbody>
</table>

QUALITY

INTRODUCTION

Most cancer registries contributing to this monograph have already published their incidence data in international reports, showing an overall good quality of data. Since 2007, AIR-TUM has formalized a set of rules concerning the registration criteria that each Italian cancer registry should adopt; these rules incorporate well-established national and international guidelines and standards. Nevertheless, a series of quality checks were planned to ensure systematic verification of the cancer registration and follow-up procedures adopted by each cancer registry.

ADJUSTING FOR CASE-MIX

All-site cancer survival, here reported in two different ways, as all-site except skin carcinomas and all-site except skin carcinomas and bladder cancer, is usually not considered by specialists because it is strongly influenced by case-mix. To compare all-cancer survival among different populations and over time, it is essential to eliminate the confounding effect of the differing case-mix that may exist if the incidence of highly lethal cancer is higher in one country than in another.

Therefore, in the previous 2011 AIR-TUM monograph we already defined a cancer-site adjustment based on the use of weights derived from the cancer site distribution of the cases diagnosed in 2000-2004. The distribution of cases is different depending on gender and the inclusion of bladder cancer in the all-site cases. Therefore, 4 categories of weights were defined, each of them applying to the specific all-site cancer groups, males or females, with or without bladder cancer. For the sake of comparability with previous results, we used the same case-mix distribution in this monograph (Table 5). For comparisons, age-adjustment using ICSS weights was also carried out. We first computed the age-specific survival adjusted for case-mix, then the case-mix and age-standardized survival as weighted average of the age-specific case-mix-standardized survivals.

ADJUSTING FOR CASE-MIX

All-site cancer survival, here reported in two different ways, as all-site except skin carcinomas and all-site except skin carcinomas and bladder cancer, is usually not considered by specialists because it is strongly influenced by case-mix. To compare all-cancer survival among different populations and over time, it is essential to eliminate the confounding effect of the differing case-mix that may exist if the incidence of highly lethal cancer is higher in one country than in another.

Therefore, in the previous 2011 AIRTUM monograph we already defined a cancer-site adjustment based on the use of weights derived from the cancer site distribution of the cases diagnosed in 2000-2004. The distribution of cases is different depending on gender and the inclusion of bladder cancer in the all-site cases. Therefore, 4 categories of weights were defined, each of them applying to the specific all-site cancer groups, males or females, with or without bladder cancer. For the sake of comparability with previous results, we used the same case-mix distribution in this monograph (Table 5). For comparisons, age-adjustment using ICSS weights was also carried out. We first computed the age-specific survival adjusted for case-mix, then the case-mix and age-standardized survival as weighted average of the age-specific case-mix-standardized survivals.

QUALITY

INTRODUCTION

Most cancer registries contributing to this monograph have already published their incidence data in international reports, showing an overall good quality of data. Since 2007, AIRTUM has formalized a set of rules concerning the registration criteria that each Italian cancer registry should adopt; these rules incorporate well-established national and international guidelines and standards. Nevertheless, a series of quality checks were planned to ensure systematic verification of the cancer registration and follow-up procedures adopted by each cancer registry. There are two levels of control in AIRTUM’s centralized da-
Gli intervalli di confidenza sono stati calcolati dopo trasformazione log-log. Pertanto il loro valore è sempre compreso tra 0 e 100%. La probabilità reale di morte e la speranza di vita dei casi di tumore sono state stimate mediante l’applicazione di modelli. Le formule applicate e più dettagliate descrizioni dei metodi sono riportate negli articoli di Lambert e coll.\(^23\) e di Andersson e coll.\(^30\)

AGGIUSTAMENTO PER LA DISTRIBUZIONE DELLE SEDI

La sopravvivenza complessiva per tutti i tumori, qui presentata in due forme, come aggregazione di tutte le sedi ad esclusione dei carcinomi cutanee e di tutte le sedi ad esclusione dei tumori della vescica e dei carcinomi cutanee, è solitamente poco considerata dallo specialista in quanto influenzata dalla distribuzione eterogenea delle sedi neoplastiche al suo interno. Per consentire confronti tra popolazioni o periodi temporali diversi è quindi essenziale calcolare delle stime aggiustate per case-mix in modo da eliminare l’effetto confondente che può insorgere se in una popolazione l’incidenza di un cancro letale fosse più alta che in un’altra.\(^38\)

Per questo motivo già nella monografia AIRTUM 2011 è stato definito un aggiustamento per sede neoplastica basato sulla definizione di pesi ricavati dalla distribuzione della casistica 2000-2004.\(^1\) La distribuzione dei casi è diversa a seconda del genere e della possibilità di includere o meno i tumori vescicali nella casistica di tutti i tumori. Sono state perciò definite 4 categorie di pesi, ciascuna di esse si applica alle corrispondenti casistiche di tutti i tumori maschi e tutti i tumori femmine, con o senza l’inclusione dei tumori della vescica. Tale distribuzione di pesi è stata utilizzata anche nella presente monografia per rendere possibili confronti con i risultati già pubblicati (Tabella 5). Per i confronti si deve considerare anche la differente distribuzione per età dei casi. L’aggiustamento per età è stato effettuato utilizzando i già menzionati pesi ICSS. Si è proceduto calcolando la sopravvivenza età-specifica standardizzata per case-mix e, quindi, la sopravvivenza standardizzata per età e case-mix come media pesata delle sopravvivenze età-specifiche standardizzate per case-mix.

QUALITÀ

INTRODUZIONE

La maggior parte dei Registri Tumori inclusi nella presente monografia ha già pubblicato i propri dati di incidenza in ambito internazionale, mostrando complessivamente un buon livello qualitativo.\(^39\) Dal 2007 l’AIRTUM ha formalizzato l’insieme delle regole relative ai criteri di registrazione che ogni Registro Tumori italiano deve adottare;\(^40\) queste sono state riportate e integrate regole e standard nazionali ed interessano il progetto di Andersson e coll.\(^30\)

MATERIALE E METODI

La probabilità reale di morte e la speranza di vita dei casi di tumore sono state calcolate, come in AIRTUM, eliminando l’effetto confondente che può insorgere se in una popolazione l’incidenza di un cancro letale fosse più alta che in un’altra.\(^38\)

Per questo motivo già nella monografia AIRTUM 2011 è stato definito un aggiustamento per sede neoplastica basato sulla definizione di pesi ricavati dalla distribuzione della casistica 2000-2004.\(^1\) La distribuzione dei casi è diversa a seconda del genere e delle possibilità di includere o meno i tumori vescicali nella casistica di tutti i tumori. Sono state perciò definite 4 categorie di pesi, ciascuna di esse si applica alle corrispondenti casistiche di tutti i tumori maschi e tutti i tumori femmine, con o senza l’inclusione dei tumori della vescica. Tale distribuzione di pesi è stata utilizzata anche nella presente monografia per rendere possibili confronti con i risultati già pubblicati (Tabella 5). Per i confronti si deve considerare anche la differente distribuzione per età dei casi. L’aggiustamento per età è stato effettuato utilizzando i già menzionati pesi ICSS. Si è proceduto calcolando la sopravvivenza età-specifica standardizzata per case-mix e, quindi, la sopravvivenza standardizzata per età e case-mix come media pesata delle sopravvivenze età-specifiche standardizzate per case-mix.

Tabella 5: Weights used in case-mix adjustment for all cancers but non-melanoma skin cancer and all cancers but non-melanoma skin and bladder cancer.

<table>
<thead>
<tr>
<th></th>
<th>MALES</th>
<th>FEMALES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALL BUT SKIN</td>
<td>ALL BUT SKIN</td>
</tr>
<tr>
<td>Head and neck</td>
<td>4.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Stomach</td>
<td>5.2</td>
<td>5.8</td>
</tr>
<tr>
<td>Colon-rectum</td>
<td>13.1</td>
<td>14.5</td>
</tr>
<tr>
<td>Liver</td>
<td>4.1</td>
<td>4.5</td>
</tr>
<tr>
<td>Pancreas</td>
<td>2.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Lung</td>
<td>15.9</td>
<td>17.8</td>
</tr>
<tr>
<td>Skin melanoma</td>
<td>2.1</td>
<td>2.3</td>
</tr>
<tr>
<td>Breast</td>
<td>29.8</td>
<td>30.7</td>
</tr>
<tr>
<td>Corpus uteri</td>
<td>4.7</td>
<td>4.8</td>
</tr>
<tr>
<td>Ovary</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>Prostate</td>
<td>19.5</td>
<td>21.7</td>
</tr>
<tr>
<td>Kidney</td>
<td>3.1</td>
<td>3.5</td>
</tr>
<tr>
<td>Bladder</td>
<td>10.3</td>
<td>-</td>
</tr>
<tr>
<td>Thyroid</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>NHL/CLL</td>
<td>4.2</td>
<td>4.7</td>
</tr>
<tr>
<td>Myeloma</td>
<td>-</td>
<td>1.4</td>
</tr>
<tr>
<td>Other</td>
<td>15.9</td>
<td>16.2</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Ulteriori dati disponibili sul sito: www.registri-tumori.it

Dal punto di vista delle tecniche di registrazione va ribaltato che le diﬀerenze più rilevanti riguardano la registrazioni dei tumori vescicali, specie nella valutazione dei tumori in situ e incerti. La modalità di eﬀettuazione del follow-up è invece sostanzialmente omogenea tra i Registri Tumori italiani essendo eﬀettuata tramite le basi dati sanitarie disponibili e le schede di decesso, con ricerca attiva dei casi non rintracciabili presso le anagraﬁ comunali. Fattori come la migrazione sanitaria, l’informatizzazione di fonti sanitarie o anagraﬁche, la qualità dell’oﬀerta sanitaria, nonché l’estensione del territorio, possono tuttavia inﬂuenzare l’accu- ratezza del dato registrato nonché la completezza del follow-up, producendo alcune diﬀerenze tra Registri Tumori. La valutazione complessiva degli indicatori, per Registro e per area geograﬁca, ha giustiﬁcato la decisione di includere tutti i Registri Tumori presenti nella banca dati AIRTUM nell’analisi di sopravvivenza di coorte 2005-2009.

INDICATORI DI QUALITÀ

DCO e conferme microscopiche

Un tradizionale indicatore di accuratezza e completezza della registrazione è la percentuale di casi individuati solo mediante il certiﬁcato di morte (DCO). I DCO possono in parte sottendere un fenomeno di perdita sistematica di casi (in genere a cattiva prognosi, che decedono prima di poter gene-

ty indicators justified the decision to include all Italian cancer registries in the AIRTUM database for at least the cohort survival analysis for the years 2005-2009.

QUALITY INDICATORS

DCO and microscopic veriﬁcations

A common indicator for cancer registration accuracy and completeness is the proportion of cases known by death certiﬁcate only (DCO). The proportion of DCO cases may indicate some systematic loss of cases (in general those with a bad prognosis, which cause death before they can generate other information in the system) and it may lead to overestimate survival, since DCO cases are not included in the survival analysis. A good indicator of the quality of the documentation available to the registry is the proportion of microscopic veriﬁcations (MV), which should be high. Table 8 shows DCO and MV percentages by site and geographic area.

Both the percentage of DCO and microscopically veriﬁed cases are within an overall threshold of acceptability. In particular, with the exception of a number of sites which by deﬁnition group together ill-deﬁned tumours, there are no DCO percentage values that deserve special attention. For some sites, such as liver and biliary tract, pancreas, brain, and eye, the proportion of microscopic veriﬁcations is lower, since clinical diagnostic practice is oriented towards other non-invasive techniques in the absence of surgery. Thus, the table must be read comparing the geographic areas by speciﬁc cancer site.

Other checks

Table 9 reports the same indicators by cancer registry for all sites except skin cancer, for the period 2005-2009. The percentage of cases lost to follow-up before 5 years ranges from 0% to 3.4% (overall 0.9%). The percentage of ill-deﬁned sites varies from 1.2% to 3.2% (overall 2.2%). Reported mortality/incidenza (M/I) ratio ranges from 46.8% to 56.4%.

Fattori come la migrazione sanitaria, l’informatizzazione di fonti sanitarie o anagraﬁche, la qualità dell’oﬀerta sanitaria, nonché l’estensione del territorio, possono tuttavia inﬂuenzare l’accu- ratezza del dato registrato nonché la completezza del follow-up, producendo alcune diﬀerenze tra Registri Tumori. La valutazione complessiva degli indicatori, per Registro e per area geograﬁca, ha giustiﬁcato la decisione di includere tutti i Registri Tumori presenti nella banca dati AIRTUM nell’analisi di sopravvivenza di coorte 2005-2009.
<table>
<thead>
<tr>
<th>Tumore</th>
<th>N-W</th>
<th>N-E</th>
<th>CENTRE</th>
<th>SOUTH</th>
<th>POOL</th>
<th>N-W</th>
<th>N-E</th>
<th>CENTRE</th>
<th>SOUTH</th>
<th>POOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lip</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
<td>0.3</td>
<td>0.0</td>
<td>0.3</td>
<td>0.0</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Tongue</td>
<td>0.5</td>
<td>0.3</td>
<td>0.0</td>
<td>0.9</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.0</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>Mouth</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>1.2</td>
<td>0.6</td>
<td>0.4</td>
<td>0.5</td>
<td>0.7</td>
<td>1.2</td>
<td>0.6</td>
</tr>
<tr>
<td>Salivary glands</td>
<td>0.6</td>
<td>1.1</td>
<td>1.7</td>
<td>0.7</td>
<td>0.9</td>
<td>0.6</td>
<td>1.1</td>
<td>1.7</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Oropharynx</td>
<td>0.3</td>
<td>0.4</td>
<td>0.0</td>
<td>1.2</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.0</td>
<td>1.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Nasopharynx</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Hypopharynx</td>
<td>0.3</td>
<td>0.4</td>
<td>1.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.4</td>
<td>1.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

Ulteriori dati disponibili sul sito: www.registri-tumori.it

I TUMORI IN ITALIA
RAPPORTO AIRTUM 2016 SOPRAVVIVENZA

Table 6. Percentage of DCO and microscopically verified cases (MV) for cases diagnosed from 2005 through 2009 for the North-East (NE), North-West (NW), Centre, South of Italy, and pool of AIRTUM cancer registries.
Table 7. Quality indexes by cancer registry for cases diagnosed from 2005 through 2009.

<table>
<thead>
<tr>
<th>Registry</th>
<th>Records (n)</th>
<th>DCO (%)</th>
<th>MV (%)</th>
<th>M/I (%)</th>
<th>Lost <5 years (%)</th>
<th>Ill Defined (%)</th>
<th>Dead <1 year (%)</th>
<th>Alive >5 years (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergamo</td>
<td>19,617</td>
<td>1.0</td>
<td>86.9</td>
<td>50.5</td>
<td>0.4</td>
<td>1.9</td>
<td>6.3</td>
<td>10.7</td>
</tr>
<tr>
<td>Biella-Vercelli</td>
<td>11,156</td>
<td>1.4</td>
<td>85.3</td>
<td>54.2</td>
<td>1.0</td>
<td>2.3</td>
<td>7.9</td>
<td>5.7</td>
</tr>
<tr>
<td>Brescia</td>
<td>26,894</td>
<td>1.5</td>
<td>75.1</td>
<td>51.9</td>
<td>0.4</td>
<td>2.4</td>
<td>5.6</td>
<td>9.7</td>
</tr>
<tr>
<td>Como</td>
<td>17,611</td>
<td>1.0</td>
<td>88.2</td>
<td>51.4</td>
<td>0.6</td>
<td>2.0</td>
<td>5.9</td>
<td>6.2</td>
</tr>
<tr>
<td>Cremona</td>
<td>12,393</td>
<td>0.9</td>
<td>84.8</td>
<td>54.8</td>
<td>0.2</td>
<td>1.9</td>
<td>6.4</td>
<td>8.0</td>
</tr>
<tr>
<td>Genova</td>
<td>34,044</td>
<td>1.2</td>
<td>84.7</td>
<td>56.0</td>
<td>0.0</td>
<td>2.3</td>
<td>6.1</td>
<td>4.3</td>
</tr>
<tr>
<td>Lodri</td>
<td>7,272</td>
<td>0.8</td>
<td>83.7</td>
<td>54.4</td>
<td>0.7</td>
<td>1.9</td>
<td>6.9</td>
<td>9.3</td>
</tr>
<tr>
<td>Mantova</td>
<td>13,366</td>
<td>1.3</td>
<td>87.9</td>
<td>52.3</td>
<td>0.5</td>
<td>1.6</td>
<td>5.0</td>
<td>5.1</td>
</tr>
<tr>
<td>Milano</td>
<td>46,888</td>
<td>1.1</td>
<td>87.7</td>
<td>50.5</td>
<td>2.3</td>
<td>1.9</td>
<td>6.1</td>
<td>9.3</td>
</tr>
<tr>
<td>Milano 1</td>
<td>27,115</td>
<td>0.9</td>
<td>90.0</td>
<td>46.8</td>
<td>0.2</td>
<td>1.3</td>
<td>5.0</td>
<td>12.2</td>
</tr>
<tr>
<td>Monza e Brianza</td>
<td>15,371</td>
<td>1.1</td>
<td>86.7</td>
<td>47.4</td>
<td>0.7</td>
<td>1.8</td>
<td>5.5</td>
<td>6.4</td>
</tr>
<tr>
<td>Pavia</td>
<td>18,663</td>
<td>0.8</td>
<td>82.1</td>
<td>56.4</td>
<td>1.0</td>
<td>2.4</td>
<td>6.9</td>
<td>8.6</td>
</tr>
<tr>
<td>Piacenza</td>
<td>8,591</td>
<td>1.1</td>
<td>84.5</td>
<td>52.8</td>
<td>2.7</td>
<td>2.6</td>
<td>5.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Sondrio</td>
<td>5,660</td>
<td>0.3</td>
<td>85.5</td>
<td>55.2</td>
<td>0.4</td>
<td>2.7</td>
<td>5.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Torino</td>
<td>31,185</td>
<td>1.3</td>
<td>88.8</td>
<td>51.7</td>
<td>1.8</td>
<td>1.8</td>
<td>5.9</td>
<td>8.3</td>
</tr>
<tr>
<td>Varese</td>
<td>26,502</td>
<td>0.8</td>
<td>87.7</td>
<td>51.2</td>
<td>0.6</td>
<td>2.3</td>
<td>6.2</td>
<td>7.5</td>
</tr>
<tr>
<td>Alto Adige</td>
<td>13,355</td>
<td>1.0</td>
<td>90.7</td>
<td>50.0</td>
<td>0.0</td>
<td>2.0</td>
<td>5.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Ferrara</td>
<td>15,393</td>
<td>0.9</td>
<td>85.9</td>
<td>54.4</td>
<td>0.8</td>
<td>2.2</td>
<td>5.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Friuli Venezia Giulia</td>
<td>44,395</td>
<td>0.6</td>
<td>88.8</td>
<td>53.6</td>
<td>0.4</td>
<td>2.9</td>
<td>6.4</td>
<td>4.7</td>
</tr>
<tr>
<td>Modena</td>
<td>23,165</td>
<td>0.3</td>
<td>90.4</td>
<td>48.2</td>
<td>1.4</td>
<td>2.2</td>
<td>4.2</td>
<td>5.5</td>
</tr>
<tr>
<td>Parma</td>
<td>15,814</td>
<td>0.3</td>
<td>89.2</td>
<td>54.6</td>
<td>1.2</td>
<td>2.2</td>
<td>5.3</td>
<td>8.4</td>
</tr>
<tr>
<td>Reggio Emilia</td>
<td>15,890</td>
<td>0.3</td>
<td>87.7</td>
<td>51.1</td>
<td>0.9</td>
<td>2.1</td>
<td>5.2</td>
<td>5.6</td>
</tr>
<tr>
<td>Romagna</td>
<td>43,924</td>
<td>1.1</td>
<td>86.9</td>
<td>50.8</td>
<td>0.1</td>
<td>2.3</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Trento</td>
<td>15,317</td>
<td>0.8</td>
<td>88.8</td>
<td>53.7</td>
<td>0.7</td>
<td>3.2</td>
<td>7.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Veneto</td>
<td>73,920</td>
<td>0.9</td>
<td>87.3</td>
<td>51.0</td>
<td>0.4</td>
<td>2.3</td>
<td>5.4</td>
<td>7.5</td>
</tr>
<tr>
<td>Firenze Prato</td>
<td>31,989</td>
<td>0.9</td>
<td>82.5</td>
<td>51.9</td>
<td>1.4</td>
<td>2.4</td>
<td>5.1</td>
<td>7.2</td>
</tr>
<tr>
<td>Latina</td>
<td>13,493</td>
<td>1.3</td>
<td>82.3</td>
<td>51.3</td>
<td>3.3</td>
<td>2.3</td>
<td>4.8</td>
<td>7.3</td>
</tr>
<tr>
<td>Umbria</td>
<td>28,887</td>
<td>1.3</td>
<td>90.8</td>
<td>54.4</td>
<td>0.3</td>
<td>1.2</td>
<td>6.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Barletta</td>
<td>7,175</td>
<td>1.5</td>
<td>83.4</td>
<td>51.8</td>
<td>0.9</td>
<td>1.9</td>
<td>5.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Brindisi</td>
<td>6,038</td>
<td>1.9</td>
<td>84.3</td>
<td>52.8</td>
<td>2.0</td>
<td>1.7</td>
<td>5.5</td>
<td>5.8</td>
</tr>
<tr>
<td>Catanzano-Messina-Enna</td>
<td>45,218</td>
<td>1.4</td>
<td>82.8</td>
<td>51.8</td>
<td>1.8</td>
<td>2.1</td>
<td>5.2</td>
<td>4.8</td>
</tr>
<tr>
<td>Catanzaro</td>
<td>7,677</td>
<td>1.0</td>
<td>84.3</td>
<td>51.2</td>
<td>0.6</td>
<td>2.3</td>
<td>5.6</td>
<td>7.3</td>
</tr>
<tr>
<td>Lecce</td>
<td>16,845</td>
<td>2.1</td>
<td>83.3</td>
<td>54.5</td>
<td>1.8</td>
<td>1.4</td>
<td>5.4</td>
<td>7.2</td>
</tr>
<tr>
<td>Napoli</td>
<td>17,357</td>
<td>1.1</td>
<td>85.2</td>
<td>53.9</td>
<td>1.1</td>
<td>2.2</td>
<td>4.5</td>
<td>10.4</td>
</tr>
<tr>
<td>Nuoro</td>
<td>5,597</td>
<td>1.1</td>
<td>83.5</td>
<td>53.5</td>
<td>0.0</td>
<td>1.4</td>
<td>5.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Palermo</td>
<td>28,646</td>
<td>2.7</td>
<td>80.5</td>
<td>54.9</td>
<td>0.2</td>
<td>2.3</td>
<td>5.7</td>
<td>8.7</td>
</tr>
<tr>
<td>Ragusa-Caltanissetta</td>
<td>10,939</td>
<td>2.1</td>
<td>82.2</td>
<td>54.6</td>
<td>0.4</td>
<td>2.5</td>
<td>5.4</td>
<td>6.0</td>
</tr>
<tr>
<td>Salerno</td>
<td>23,864</td>
<td>2.5</td>
<td>80.7</td>
<td>51.3</td>
<td>3.4</td>
<td>2.0</td>
<td>6.4</td>
<td>6.8</td>
</tr>
<tr>
<td>Sassari</td>
<td>12,118</td>
<td>2.8</td>
<td>85.2</td>
<td>54.5</td>
<td>0.0</td>
<td>2.6</td>
<td>6.8</td>
<td>6.5</td>
</tr>
<tr>
<td>Siracusa</td>
<td>9,074</td>
<td>2.3</td>
<td>81.6</td>
<td>55.3</td>
<td>2.1</td>
<td>2.2</td>
<td>6.4</td>
<td>8.0</td>
</tr>
<tr>
<td>Taranto</td>
<td>11,959</td>
<td>1.7</td>
<td>86.1</td>
<td>51.8</td>
<td>2.0</td>
<td>2.6</td>
<td>4.6</td>
<td>7.0</td>
</tr>
<tr>
<td>Trapani</td>
<td>9,559</td>
<td>1.1</td>
<td>82.6</td>
<td>56.1</td>
<td>0.2</td>
<td>2.9</td>
<td>6.6</td>
<td>4.8</td>
</tr>
<tr>
<td>TOTAL</td>
<td>868,196</td>
<td>1.2</td>
<td>85.8</td>
<td>52.2</td>
<td>0.9</td>
<td>2.2</td>
<td>5.7</td>
<td>7.3</td>
</tr>
</tbody>
</table>
rare altre informazioni all’interno del sistema), che può plau- sibilmente portare a una sovrastima della sopravvivenza in quanto la casistica DCO viene esclusa dall’analisi.

Un buon indicatore della qualità della documentazione a disposizione dei Registratori è invece dato dalla proporzione di verifiche microscopiche (MV) che è bene mostrare valori elevati. In Tabella 8 sono elencate le percentuali di casi DCO e MV per sede e ripartizione geografica. Si osserva come sia le percentuali di casi DCO sia le percentuali di casi con verifica microscopica si mantengono per la totalità dei casi all’interno di una soglia complessiva d’accettabilità, essendo per i DCO ben al di sotto del 5% (minimo 0,7% per il Centro Italia, massimo 1,9% per il Sud Italia) e per le verifiche microscopiche superiore all’80% (minimo 82,8% per il Sud Italia, massimo 87,5% per il Nord-Est). In particolare, ad esclusione di alcune sedi che raccogliono per definizione neoplasie mal definite, non si osservano valori della proporzione di casi DCO degni di particolare attenzione. Per alcune sedi quali fegato e vie biliari, pancreas, encefalo e occhio, la proporzione di verifiche microscopiche è più bassa (generalmente inferiore al 60%) poiché in assenza d’intervento chirurgico la pratica clinica diagnostica si è orientata verso altre tecniche non invasive. In generale, quindi, la tabella dovrà essere letta confrontando le ripartizioni geografiche per sede specifica del tumore.

Altri controlli

In Tabella 9 vengono mostrati gli stessi indicatori per ciascuno dei 42 Registri Tumori, riferiti al totale delle sedi a esclusione dei carcinomi della cute nel periodo 2005-2009. La percentuale di casi persi al follow-up prima di 5 anni varia da 0% al 3,4% (valore globale 2,2%) e il valore del rapporto mortalità/incidenza di casi in sede mal definita è compreso tra 1,2% e 3,2% (valore globale 0,9%). La percentuale di casi persi al follow-up prima di 5 anni esclusione dei carcinomi della cute nel periodo 2005-2009.

Ulteriori dati disponibili sul sito: www.registri-tumori.it

BIBLIOGRAFIA/ REFERENCES