

Corso di Aggiornamento per Operatori dei Registri Tumori

CEFPAS Caltanissetta - 4, 5 e 6 Ottobre 2023

Aggiornamento sui Tumori Mammari Il punto di vista dell'oncologo Vincenzo Adamo Coordinatore Rete Oncologica Siciliana

DECLARATION OF INTERESTS

During the past three years prof. Vincenzo Adamo received honoraria for consultant, advisory roles, and speaker bureau by:

Astra Zeneca Daichii-Sankyo Gilead GSK Lilly MSD Novartis Pfizer Seagean Servier Veracyte

17,3 16,0 14,3 14,0 3,8 3,4 3,3 3,1 3,1 T.M. della prostata T.M. del polmone T.M. del colon-retto T.M. del Rene e delle Pelvi T.M. del fegato T.M. dello stomaco Linfoma N.H. T.M. del pancreas T.M. della vescica

Figura F.1 u. – Mortalità proporzionale per tumori (Sicilia; tutte le età; uomini)

Figura D.1 u - Incidenza proporzionale prime 10 cause tumorali (Sicilia; tutte le età; uomini)

Incidenza			
	Uomini	Donne	Π
cinomi della cute)	391.0	312.9	÷
	9.5	3.8	2.
	2.1	0.4	5.
	12.9	7.0	1.
	53.7	37.1	Ę
	14.5	5.6	2.
	5.4	4.5	÷
	11.6	9.2	4
	8.6	0.9	6

Tabella D. Trend di incidenza per le principali sedi anni 2003-2014

Tabella B. Rapporto U/D

Incidenza		
iede	Uomini	Donne
utte (escluso carcinomi della cute)	÷	÷
ADS	<i>→</i>	Ш
isofago	I	u
stomaco	→	→
colon-Retto	Ш	ш
egato	÷	→
fie biliari	Ш	→
ancreas	Ш	÷
olmone	÷	4
lelanoma	÷	¢
lesotelioma	Ш	Ш
lammella		÷
tero collo		11
ttero corpo		11

Incidenza					
Incidenza					
	Uorr	ini	Dor	ne	
Sede	Sicilia	Italia	Sicilia	Italia	
Tutte (escluso carcinomi della cute)	→	→	÷	→	0
VADS	→	→	n	n)
Stomaco	→	→	→	→	F
Colon-Retto	ш	→	ш	→	>
Fegato	→	→	→	→	σ (
Pancreas	ш	←	←		<u>ت</u> د
Polmone	→	→	←	←	
Melanoma	←	←	←	←	ď
Mammella			←	←	M
Prostata	п	→			Σ
Rene		H	u	II	
Vescica	→	→	÷	u	
Tiroide	←	←	н	÷	
Linfoma Hodgkin				→	C
					ļ

Sede	Sicilia	Italia	Sicilia	Italia
Mortalità	2			
	No	mini		Donne
Sede	Sicilia	Italia	Sicilia	n Italia
Tutte (escluso carcinomi della cute)	→	→	"	→
VADS		→	←	H
Stomaco	→	→	H	H
Colon-Retto		→		→
Fegato	→	→	→	→
Pancreas	n	n.	u	n
Polmone	→	→	4	÷
Melanoma	÷	H	н	H
Mammella				→
Prostata	→	→		
Rene	÷	H	н	H
Vescica	н	H	H	н
Troide	n	H	→	→
Linfoma Hodgkin		→		→
sopravvive	nza			

Tutti, donne	57	09	60	63
Mammella	81	85	85	87
Prostata	78	8	88	91
Colon-retto	56	29	60	65
Polmone	12	14	14	16

OUTLINE

> The actually therapeutic landscape in HR+HER2- Early BC

- How can we decrease the relapse risk during the first 5 years and beyond ?
- > The new therapeutic paradigm in the adjuvant setting in High risk
- > The actually and the future therapeutic landscape in Early TNBC
- > The BRCA1-2 mutant in HR+HER2- & TN EBC
- > The actually and the future therapeutic landscape in HER2+ Early BC

Breast Cancer: histological and molecular characteristics

Harbeck N et al. NatRevDisPrimers. 2019 Sep23;5(1):66.

Luminal Breast Cancer is the most represented breast cancer subtype

Surveillance, Epidemiology and End Results Program (SEER) 22, 2015-2019

Prat A, et al. Mol. Oncol. 2011

Guideline-Recommended Biomarker Testing for Breast Cancer

Wolff. JCO. 2018;36:2105. 2. NCCN. Clinical practice guidelines in oncology: breast cancer. v.4.2023. nccn.org.
Allison. JCO. 2020;38:1346. 4. NCCN. Clinical practice guidelines in oncology: genetic/familial high-risk assessment: breast, ovarian, and pancreatic. v.3.2023. nccn.org.

Treatment Individualization

100 BC patients

20% HER2+ BC 15% TN BC

65 HR+/HER2- BC patients

5% <u>></u>4 Node positive 2-3% too frail for CT

50 HR+/HER2- BC PATIENTS POTENTIALLY CANDIDATE TO ADJUVANT CHEMOTHERAPY BENEFIT/NO TOXICITY BENEFIT/TOXICITY NO BENEFIT/NO TOXICITY

NO BENEFIT/TOXICITY

Spediz. abb. post. - art. I, comma I Legge 27-02-2004, n. 46 - Filiale di Roma

Anno 162° - Numero 161

DELLA REPUBBLICA ITALIANA

PARTE PRIMA

Roma - Mercoledì, 7 luglio 2021

SI PUBBLICA TUTTI I Giorni non festivi

MODALITÀ E REQUISITI PER L'ACCESSO AI *TEST* GENOMICI PER IL CARCINOMA MAMMARIO ORMONORESPONSIVO IN STADIO PRECOCE

ALTO RISCHIO	le Almeno 4 delle seguenti caratteristiche	G3 T3 T4 Ki 67>30% ER<30% N Positivo (>3 linfonodi non indicazione al <i>test</i>)	ac- no
BASSO RISCHIO	Le seguenti 5 caratteristich	G1 T1 (a-b)* Ki 67 ~20% ER>80% N Negativo	*In caso di T1a non è indicato I cesso al <i>test</i> in presenza di alme altri 2 narametri favorevoli

Most Common Commercially Available Prognostic Gene Signatures for Breast Cancer

	Mammaprint	OncotypeDx	PAM50 ROR	EndoPredict	Breast Cancer Index
Method	Microarrays qRT-PCR	qRT-PCR	NannoString	qRT-PCR	qRT-PCR
Material	Frozen FFPE	FFPE	FFPE	FFPE	FFPE
Assessment	Central lab	Central lab	Local lab	Local lab	Central Lab
Population	pT1-T2, pN0, age <61	ER+	All	ER+/ HER2-	ER+
Early risk	Yes	Yes	Yes	Yes	Yes
Late risk		Moderate	Good	Good	Good
Level I evidence	Yes	Yes	Yes	Yes	Yes

Kwa M, Nat Rev Clin Oncol 2017

Predicting Baseline Prognosis

All tests have at least level IB evidence for HR+/HER2-, T1-2 and N0-1 early BC

 Intermediate risk

High risk

14 16

10 12

Vijver NEJM 2002

Paik NEJM 2006

DATA FROM PROSPECTIVE RANDOMIZED TRIALS

* FDA Approval: Mammaprint & PAM50 ROR

(include tumor size+nodal status) Analytical Validation of Decentralized Gene Expression-based tests (only EndoPredict and PROSIGNA)

Adjuvant Chemotherapy in Early Breast Cancer: Benefit/Risk Balance

... and Socio-Economic Burden

Adpted by M. Piccart AACR 2016

Treatment of Early-Stage, HR+/HER2- Breast Cancer

Endocrine Therapy

- Tamoxifen
- Aromatase inhibitors
- Ovarian suppression (LHRH analogues) in high-risk premenopausal women
- Extended adjuvant therapy (10 yr vs 5 yr)

Meta-analysis of 5 Yr of AI vs 5 Yr of Tamoxifen

Chemotherapy

 Benefit depends on risk for recurrence and biology of the disease

Unmet Need

 Identifying patients with HR+ breast cancer who have primary endocrine resistance and preventing or delaying recurrence with additional therapy

Early Breast Cancer Trialists Collaborative Group. Lancet. 2015;386:1341. Cardoso. Ann Oncol. 2019;30:1194

EBC

EBC

Strategia per migliorare l'indice terapeutico dei trattamenti adiuvanti

- Chemioterapia sequenziale
- Aggiunta di altri agenti
 - Platinoidi
 - Doppio targeting di
 - CDK 4/6 inibitori
 - PARP inibitori
 - Checkpoint inibitori
- Prolungamento della durata dei trattamenti
 - Terapia endocrina

OUTLINE

> The actually therapeutic landscape in HR+HER2- Early BC

How can we decrease the relapse risk during the first 5 years and beyond ?

> The new therapeutic paradigm in the adjuvant setting in High risk

> The actually and the future therapeutic landscape in Early TNBC

> The BRCA1-2 mutant in HR+HER2- & TN EBC

> The actually and the future therapeutic landscape in HER2+ Early BC

EBCTCG main findings: Long-Term Risk

Efficacy on extended adjuvant endocrine therapy

Trial	Samp le size	Medi an FU (yrs)	Treat ment arm	Yrs 1	2	3	4	5	6	7	8	curr	ence	ton	13 1	4 15	DFS HR (95%CI)	OS HR (95%CI)
MA.17[34]	5187	5.3	I									be al					0.68 (0.56-0.83)	0.99 (0.79-1.24)
NSABP B-33[33]	1 5 9 8	2.5	C								ethe?	sma					0.68 (0.45-1.03)	NR
ABCSG 6a[32]	856	5.2	C 1							edu	only	val				12	0.62 (0.40-0.96)*	0.89 (0.53-1.34)
ATLAS[26]	6846	7.6							dic		Sur				_		0.84 (0.7693)*	0.87 (0.78-0.97)
aTTom[28,27]	6953	-9.0	1					An.	har) istre				-			0.86 (0.77-0.96)*	0.94 (0.86-1.03)
MA.17R[6]	1918	6.3	1				TW	l'pu	sta	36		-		-			0.80 (0.63-1.01)	0.97 (0.73-1.28
DATA[3]	1660	4.4	I			ant	mo	met	0-		1	-		-			0.79 (0.62-1.02)	0.91 (0.65-1.29
IDEAL[4]	1824	6.6	1	11	Adju	St	stan							-			0.92 (0.74-1.16)	1.04 (0.78-1.38
NSABP B-42[5]	3966	6.9		ded	br	50 S					-			_			0.85 (0.73-0.99)	1.15 (0.92-1.44)
SOLE[36]	4884	5.0	EX	sunda	3	A		11	Inte	rmittent 9	months pe	r year		-			1.08 (0.93-1.26)	0.85 (0.68-1.06)

Van Hellemon IEG, et al. Curr Treat Options Oncol 2018

Predicting Late Recurrence

"...ROR was the strongest molecular prognostic factor in predicting late recurrence and discriminating patients into low and high risk for late distant recurrence"

1. Prat A Ann Oncol 2012; 2. Sestak I J Natl Cancer Inst 2013; 3. Curigliano G. Ann of Oncol 2017

OUTLINE

> The actually therapeutic landscape in HR+HER2- Early BC

How can we decrease the relapse risk during the first 5 years and beyond ?

> The new therapeutic paradigm in the adjuvant setting in High risk

> The actually and the future therapeutic landscape in Early TNBC

➢ The BRCA1-2 mutant in HR+HER2- & TN EBC

> The actually and the future therapeutic landscape in HER2+ Early BC

Adjuvant CDK4/6i trials: Study Design

	PENELOPE-B	PALLAS	NATALEE	MONARCH-E
Agent	Palbociclib	Palbociclib	Ribociclib	Abemaciclib
Sample Size	1250	5600	5000	4580
Dose Schedule	125 mg qD 3 wk on /1 wk off	125 mg qD 3 wk on /1 wk off	400 mg qD 3 wk on /1 wk off	150 mg BID, continuous
Duration	1 year	2 years	3 years	2 years
Eligibility Lower risk	Residual dx post- NACT CPS-EG <u>></u> 2 with	Stage IIA (capped at 1000)	Stage IIA: N1 or N0 with G2/Ki-67>20%	1-3 + LN <i>w/1:</i> T size <u>></u> 5 cm Grade 3 Ki⊧67 >20%
group	уріч		Gz/High Hisk G5	RI-07 <u>-</u> 2078
Higher risk group	CPS-EG <u>></u> 3	Stage IIB/III	Stage IIB/III	<u>></u> 4 + LN

monarchE

monarchE: Efficacy

1. Johnston et al SABCS 2022. Oral Presentation GS1-09; 2. Johnston et al. Lancet Oncol.2023

monarchE: Efficacy

Increasing benefit with longer follow-up - "carryover effect"

increases with time Piecewise HR by year Year HH 0-1 HR 0.78 On abema 1-2 HR 0.67 2-3 HR 0.62 Off abema 3-4 HR 0.60

Relative benefit potentially

Follow-up currently too short to assess overall survival

Johnston et al Lancet Oncol 2023

NATALEE study design^{1,2}

Primary End Point

iDFS using STEEP criteria

Secondary End Points

- Recurrence-free survival
- Distant disease-free survival
- OS
- PROs
- Safety and tolerability
- PK

Exploratory End Points

- Locoregional recurrence-free survival
- Gene expression and alterations in tumor ctDNA/ctRNA samples

* Enrollment of patients with stage II disease was capped at 40%. • 5101 patients were randomized from 10 Jan 2019 to 20 April 2021. • Open-label design. ^d Per investigator choice. CT, chemotherapy; ctDNA/RNA, circulating tumor DNA/RNA; EBC, early breast cancer; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; IDFS, invasive disease-free survival; N, node; NSAI, nonsteroidal aromatase inhibitor; OS, overall survival; PAM50, prediction analysis of microarray 50, PK, pharmacokinetics; PRO, patient reported outcome; R, randomized; STEEP, Standardized Definitions for Efficacy End Points in Adjuvant Breast Cancer Trials

1. ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03701334. Accessed April 6 2023. 2. Slamon DJ, et al. J Clin Oncol. 2019;37(15 suppl) [abstract TPS597].

#ASCO23

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

NATALEE TRIAL: RESULTS (1)

- Median follow-up for iDFS was 27.7 months .
- Based on the P value of 0.0014, the IDMC • concluded that the results met the criteria to demonstrate statistically significant and clinically superior efficacy
- Absolute iDFS benefit with RIB + NSAI at 3 vears was 3.3%
- Risk of invasive disease was reduced by 25.2% with RIB + NSAI vs NSAI alone
- Ongoing patients will remain on treatment a . follow-up will continue as prespecified

iDFS benefit was consistent across prespecified key subgroups RIB + NSAI NSAI Alone

2023 ASCO ANNUAL MEETING

	Subgroup	n = 2549	n = 2552	1.1	HR	(95% CI)
	Menopausal status					
	Men and premenopausal women	71/1126	93/1132	H-01-1	0.722	(0.530-0.983)
	Postmenopausal women	118/1423	144/1420	He-	0.781	(0.613-0.997)
	AJCC stage					
	Stage II	49/1011	65/1034		0.761	(0.525-1.103)
	Stage III	140/1528	172/1512	H-BI-I	0.740	(0.592-0.925)
	Prior CT					
	Neoadjuvant	111/1085	132/1095	He H	0.785	(0.610-1.011)
	Adjuvant	63/1223	89/1220	H-	0.671	(0.486-0.927)
	Prior ET					
	Yes	127/1824	157/1801	⊢ ∎ <mark>⊢</mark>	0.756	(0.598-0.955)
	No	62/725	80/751		0.774	(0.556-1.079)
_	Region					
	North America/Western Europe/Oceania	111/1563	139/1565	Here	0.759	(0.591-0.974)
	Rest of world	78/986	98/987	H	0.757	(0.562-1.019)
	Histological grade at time of surgery					
	Grade 1	9/213	12/217		0.778	(0.328-1.846)
	Grade 2	102/1460	125/1432	He I	0.749	(0.577-0.973)
	Grade 3	61/684	78/702	Hall I	0.776	(0.555-1.085)
	Ki-67 status ^a					
	Ki-67 ≤ 20%	76/1199	95/1236	H-+	0.801	(0.593-1.083)
	Ki-67 > 20%	82/920	105/938	Hel-	0.746	(0.559-0.996)
	Nodal status ^{b,c}					
	NO	16/285	28/328	┝╼┼┼┥	0.630	(0.341-1.165)
	N1-N3	173/2261	208/2219	Here I	0.771	(0.630-0.944)

Favors RIB + NSAI Favors NSAI alone

NATALEE TRIAL: RESULTS (2)

Consistent improvement in DDFS with ribociclib

- Distant disease–free survival is defined as the time from date of randomization to date of first event of distant recurrence, death (any cause), or second primary non-breast invasive cancer^b
- The one-sided nominal *P* value was .0017
- Absolute distant disease–free survival benefit with RIB + NSAI at 3 years was 2.2%
- Risk of distant disease was reduced by 26.1% with RIB + NSAI vs NSAI alone

Ribociclib showed a trend for improved OS

 Results for secondary end points consistently favored ribociclib + NSAI over NSAI alone

Slamon D, ASCO 2023

Ormonoterapia adiuvante associata ad inibitori di cicline (CDK4/6i) nelle donne ad alto rischio di recidiva

ADDENDUM Linee guida CARCINOMA MAMMARIO IN STADIO PRECOCE

Addendum edizione 2022 Aggiornata a 23.02.2023

In collaborazione con:

Bilancio beneficio/danno: In considerazione del vantaggio osservato in termini di IDFS e DRFS, pur in assenza di un vantaggio in OS (dati immaturi), a fronte del profilo di tossicità nel complesso maneggevole e considerati i limiti sopra-descritti, il bilancio beneficio-danno appare probabilmente a favore dell'aggiunta di abemaciclib al trattamento endocrino standard in pazienti con carcinoma mammario a recettori ornonali positivi/HER2-negativo ad alto rischio.

Qualità globale delle evidenze	eRaccomandazione clínica	Forza della raccomandazione	-
	In pazienti con carcinoma mammario HR+/HER2-N+ ad		-
MODED AT A	alto rischio* un trattamento adiuvante con abemaciclib +	Condizionale a	
MODENALA	terapia endocrina può essere considerato rispetto a terapia	favore	
	endocrina		
COI: nessuno			

* Alto rischio: positività ≥ 4 linfonodi ascellari o da 1 a 3 linfonodi ascellari con almeno una delle seguenti condizioni: dimensioni della neoplasia ≥ 5 cm e/o grado istologico 3 (coorte 1 dello studio MonarchE).

OUTLINE

> The actually therapeutic landscape in HR+HER2- Early BC

How can we decrease the relapse risk during the first 5 years and beyond ?

> The new therapeutic paradigm in the adjuvant setting in High risk

> The actually and the future therapeutic landscape in Early TNBC

The BRCA1-2 mutant in HR+HER2- & TN EBC

> The actually and the future therapeutic landscape in HER2+ Early BC

TNBC

- ➤ TNBC lacks expression of ER (<1%), PgR (<1%) and HER2</p>
- > TNBC comprises approximately 15% of all breast
- BRCA mutations in nearly 20% of TNBC patients (vs 5% non-TNBC): 16% BRCA1 and 4% BRCA2
- Patients with metastatic TNBC experience poor outcomes relative to patients with other breast cancer subtypes, with a median of 18 months or less

New Classification of TNBC

Cell Cycle DNA Replication Reactorie G, Pathway RhA Polymerase ATR/ BRCA Pathway G. to S Cell Cycle Basal-like 2 EGF Pathway NGF Pathway MET Pathway MET Pathway MET p-caterion Pathway MET (Pathway Olifice Pathway Olifice Pathway Immunomodulatory CTLA4 Patrony 8.12 Pathesay NK Cell Patheay Tht/The Pathway E,7 Pathway Antigen Processi NFKB Pathway NFKB Pathway TheF Pathway T CAD Signal Transduction DC Pathway RCR Signating Pathway RK Cell Bioliated Cytoloxicity JAK: 93AT Signating Pethway ATR/ BRCA Pathway Mesenchymal-like **IGF/ mTOR Pathway** ECM Pathway Regulation of Actin by RHO Whit Pottwoy ALS Pathway TGFI Pathway Mesenchymal Stem-like ECM Receptor Interaction TCR Pathway WNT products Front Activation front Activation front Phophate Networks NFKB Pathenay EGF Pathenay DGE Pactnery CHI Pactnery Calcum Bignaling Pactnery Adjourphotor Standing Patholy PDCP Pactnery Calcum Bignaling Patholy PDCP Pactnery Luminal AR Pertose/Glucyronate Intero Glutathione Nataboliam Tyroatre Netaboliam Starold Biosynthesis Served Googrammes Porphyrin Metabolian Androgen and Estrogen Metabolism Olycosphingoliphi Metabolism Flagelist Assembly Citrate Oycle TCA

-3

.0:

3

Basal-like 1: cell cycle, DNA repair and proliferation genes

Basal-like 2: Growth factor signaling (EGFR, MET, Wnt, IGF1R)

IM: immune cell processes (medullarv breast cancer)

M: Cell motility and differentiation, EMT processes

MSL: similar to M but growth factor signaling, low levels of proliferation genes (metaplastic cancers)

LAR: Androgen receptor and downstream genes, luminal features

Lehmann BD et al JCI 2011

Marra & Curigliano NPJ Breast Cancer 2020

Neoadjuvant Immunotherapy in early TNBC

32%

KEYNOTE-522 Study Design (NCT03036488)

Schmid P, NEJM 2020;

Neoadjuvant Immunotherapy in early TNBC

In KEYNOTE-522, pembrolizumab added to chemotherapy resulted in a significant improvement of EFS vs. placebo in early TNBC¹

Pembrolizumab received FDA approval for high-risk, early-stage TNBC in combination with NACT, and then continued as a single agent as adjuvant treatment after surgery based on these data²

CI=confidence interval; EFS=event-free survival; TNBC=triple-negative breast cancer

1. Schmid P, et al. Presented at ESMO Virtual Plenary 2021; 15–16 July Schmid P, NEJM 2022

Tailored Chemotherapy Escalation in Residual Disease

CREATE-X: Trial Design

¹^r B_{reast} C_{anc}

Masuda et al, NEJM 2017

Systemic Treatment Approach STAGE 1-3 TNBC

Strategie di trattamento sistemico neoadiuvante

Associazione Italiana di Cheologia Medica

ADDENDUM Linee guida CARCINOMA MAMMARIO IN STADIO PRECOCE

Addendum edizione 2022 Aggiornata a 23.02.2023

In collaborazione con:

I risultati dello studio Keynote522 si b aditivante indipendentemente dalla ris riguardo al trattamento aditivante otti

Bilancio beneficio/danno: In considerazione del vantaggio osservato in termini di pCR e EFS, pur in assenza di un vantaggio in OS (dati immaturi), a fronte dell'incremento del carico di tossicità, il Panel ha giudicato il bilancio beneficio/danno come probabilmente a favore dell'aggiunta di pembrolizumab al trattamento chemioterapico neoadiuvante standard in pazienti con carcinoma mammario triplo-negativo stadio II-III. Quesito 22: Dovrebbe un trattamento neoadiuvante con pembrolizumab + chemioterapia versus chemioterapia essere utilizzato per pazienti con carcinoma mammario triplo-negativo ad alto rischio? La direzione e la forza della raccomandazione verranno definite non appena pembrolizumab sarà autorizzato da parte di AIFA.

triplo-negative e da olaparib nel sottogruppo con mutazione germinale di BRCA1/2. Ad oggi non sono I risultati dello studio Keynote522 si basano sulla somministrazione di pembrolizumab anche nel setting considerati i dati indipendenti di beneficio (in assenza di pembrolizumab) conferito da capecitabina in pazienti adiuvante indipendentemente dalla risposta patologica. E importante sottolineare l'attuale incertezza riguardo al trattamento aditivante ottimale in pazienti con malattia residua dopo terapia neoaditivante. disponibili dati che supportino l'uso di pembrolizumab in combinazione a capecitabina o olaparib.

OUTLINE

- > The actually therapeutic landscape in HR+HER2- Early BC
- How can we decrease the relapse risk during the first 5 years and beyond ?
- > The new therapeutic paradigm in the adjuvant setting in High risk
- > The actually and the future therapeutic landscape in Early TNBC

> The BRCA1-2 mutant in HR+HER2- & TN EBC

> The actually and the future therapeutic landscape in HER2+ Early BC

BRCA1/2 mutant in TN & HR+HER2- Breast Cancer

TNBC patients

Park SH, et al. *Mol Cancer Res.* 2020

OLYMPIA TRIAL: OLAPARIB IN EARLY HER2- BRCA mut

1 year adjuvant olaparib (up to 12 weeks) after completion of local treatment and (neo)adjuvant chemotherapy improves overall survival in patients with high-risk TNBC and (likely) pathogenic variants in *BRCA1*/2

Tutt A, Esmo Virtual Plenary 2022

Terapia sistemica neoplasia mammaria BRCA-correlata

germinale BRCA1/2 affetti da neoplasia mammaria HER2-negativa (a recettori positivi o negativi) ad alto

tumori, tenuto conto dell'impatto non detrimentale in termini di qualità di vita e dell'impatto in termini di

Bilancio beneficio/danno: In considerazione del vantaggio osservato in termini di iDFS, DDFS, OS, secondi

tossicità, il Panel ha giudicato il bilancio beneficio/danno a favore di olaparib in pazienti con mutazione

ADDENDUM Linee guida CARCINOMA MAMMARIO IN STADIO PRECOCE

Addendum edizione 2022 Aggiornata a 23.02.2023

La direzione e la forza della raccomandazion

rischio di recidiva.

La direcione e la forza della raccomandazione verranno definite non appena olaparib sarà autorizzato da parte di AIFA. Si ribadisce che in Italia olaparib è disponibile nell'ambito di un programma ad uso compassionevole (a partire da Maggio 2022) per il trattamento adiuvante di pazienti con neoplasia della mammella in stadio precoce, HER2-negativo e con mutazioni germinali nei geni BRCA1/2, che presentino caratteristiche istopatologiche ad alto rischio e che abbiano completato il trattamento loco-regionale e la chemioterapia (neo/adiuvante).

ADDENDUM Linee guida CARCINOMA MAMMARIO IN STADIO PRECOCE Addendum edizione *La direzione e la forza della raccomandazione verranno definite non appena olaparib sarà autorizzato da parte di AIFA. 2022 Aggiornata a 23.02.2023

OUTLINE

- > The actually therapeutic landscape in HR+HER2- Early BC
- How can we decrease the relapse risk during the first 5 years and beyond ?
- > The new therapeutic paradigm in the adjuvant setting in High risk
- > The actually and the future therapeutic landscape in Early TNBC
- > The BRCA1-2 mutant in HR+HER2- & TN EBC

> The actually and the future therapeutic landscape in HER2+ Early BC

Overview of HER2 in Breast Cancer

- ~15% of breast cancer are considered HER2 "positive"
- HER2 gene amplification and/or HER2 protein overexpression is linked to a more aggressive phenotype
- HER2 is a validated therapeutic target

Slamon. Science. 1987;235:177. Ran. Onco Targets Ther. 2020;13:4385. seer.cancer.gov/statfacts/html/breast-subtypes.html.

Current Binary Classification of HER2 in Breast Cancer

Targeted Therapies for HER2+ Breast Cancer

Gajria. Expert Rev Anticancer Ther. 2011;11:263. Pernas. Ther Adv Med Oncol. 2019;11:1758835919833519.

APHINITY: Pertuzumab, Trastuzumab, and CT vs Trastuzumab and CT in HER2+ EBC

*Or node negative with tumors >0.5 to $\leq 1 \text{ cm} + \geq 1$ of following: histologic/nuclear grade 3; ER- and PR-; aged <35 yr. Node-negative enrollment capped after first 3655 patients randomized.

- Primary endpoint: IDFS per modified STEEP definition³ (excludes second primary non-BC as event)
- Secondary endpoints: IDFS per STEEP definition,³ OS, distant recurrence-free survival, DFS, recurrence-free interval, safety, cardiac safety, health-related QoL

1. von Minckwitz. NJEM. 2017;377:122. 2. Piccart. JCO. 2021;39:1448 3. Hudis. JCO. 2007;25:2127.

APHINITY: 6-Yr Follow-up for IDFS in ITT Population

10	0			3 Yr 94.1%			6 Yr 90.6%
ء ج	30			Pertuzumab (n = 2400)	Placebo (n = 2404	.)	87.8%
IDFS (9	40 10	Events, n (%) Stratified hazard ratio Median FU, mo	o (95% Cl)	221 (9.2) 0.76 (0.6 7	287 (11.9) 4-0.91) 4.1		
2	20	6 yr from randomizat Difference in event-fi (95% CI for difference	ion ee rate, % e)	2 (1.0	.8 -4.6)		
	0	1	2	3	4	5	6
Patients at F	Risk. n		Yr Fror	n Random As	ssignment		
Pertuzumab Placebo	2400 2404	2277 2312	2198 2215	2122 2134	2055 2039	1978 1967	1482 1421

Piccart. JCO. 2021;39:1448.

APHINITY: 6-Yr Follow-up IDFS, OS, Safety

6-yr IDFS rate, %	Pertuzumab	Placebo	Hazard Ratio (95% CI)
ІТТ	96.0 (n = 2400)	87.8 (n = 2404)	0.76 (0.64-0.91)
■ HR+	91.2 (n = 1536)	88.2 (n = 1546)	0.73 (0.59-0.92)
■ HR+	89.5 (n = 864)	87.0 (n = 858)	0.83 (0.63-1.10)
■ LN+	87.9 (n = 1503)	83.4 (n = 1502)	0.72 (0.59-0.87)
■ LN-	95.0 (n = 897)	94.9 (n = 902)	1.02 (0.69-1.53)
6-yr OS rate, %	Pertuzumab	Placebo	Hazard Ratio (95% Cl)
ТТТ	94.8 (n = 2400)	93.9 (n = 2404)	0.85 (0.67-1.07)

- No difference in fatal AE (0.9% pertuzumab vs 1.2% placebo)
- More primary cardiac events with the addition of pertuzumab: 0.8% vs 0.3% with placebo

Piccart. JCO. 2021;39:1448.

KATHERINE: Trastuzumab Emtansine vs Trastuzumab as Adjuvant Therapy for HER2+ EBC

Open-label, phase III trial

Patients with HER2+ EBC (cT1-4/N0-3/M0) who had residual invasive disease in breast or axillary nodes after neoadjuvant chemotherapy + HER2-targeted therapy* at surgery (N = 1486) **T-DM1⁺** 3.6 mg/kg IV Q3W x 14 cycles (n = 743)

Trastuzumab 6 mg/kg IV Q3W x 14 cycles (n = 743)

Randomization occurred within 12 wk of surgery; **radiotherapy and/or endocrine therapy given per local standards**. *Minimum of 9 wk of taxane and trastuzumab. [†]Patients who d/c T-DM1 for toxicity allowed to switch to trastuzumab to complete 14 cycles.

- Primary endpoint: IDFS
- Secondary endpoints: distant recurrence-free survival, OS, safety

Geyer. SABCS 2018. Abstr GS1-10. von Minckwitz. NEJM. 2019;380:617.

KATHERINE: IDFS

First IDFS Event, %	T-DM1	т	
Any	12.2	22.2	
Distant recurrence	10.5*	15.9 ⁺	
Locoregional recurrence	1.1	4.6	
Contralateral breast cancer	0.4	1.3	
Death without prior event	0.3	0.4	

CNS events: *5.9% vs ⁺4.3%.

von Minckwitz. NEJM. 2019;380:617.

ExteNET 5-Yr Update: Neratinib vs Placebo After Adjuvant Trastuzumab in HER2+ EBC

Multicenter, double-blind, phase III trial

Patients with HER2+ EBC (stage I-III); adjuvant trastuzumab completed ≤2 yr before randomization*; N+/- disease or residual disease after neoadjuvant therapy known ER and PR status (N = 2840)

1 vr

*Amendment in February 2010 restricted enrollment to patients with N+ disease who completed trastuzumab ≤1 yr before randomization.

- Primary endpoint: IDFS at 2 yr
- Primary analysis of 2-yr IDFS rate: neratinib, 93.9%; placebo, 91.6% (hazard ratio: 0.67; 95% CI: 0.50-0.91; P = .0091)

Chan. Lancet Oncol. 2016;17:367. Martin. Lancet Oncol. 2017;18:1688. Chan. Clin Breast Cancer. 2021;21:80.

ExteNET: 5-Yr IDFS Analysis by HR Status

Martin. Lancet Oncol. 2017;18:1688.

Proposed Strategy for Managing Patients With Stage I-III HER2+ EBC

1. Barcenas. Ann Oncol. 2020;31:1223.

Future Directions: Ongoing Clinical Trials in HER2+ EBC

Trial Name	Phase	Setting	Treatment Arms	Primary Endpoint
IMpassion050 ¹	111	Neoadjuvant; T2-4, N1-3, M0 with known HER2, HR, PD-L1 status	AC + atezolizumab → THP + atezolizumab vs AC + Pbo → THP + Pbo	pCR
APTneo ²	111	Neoadjuvant; early high-risk (T1c-2N1 or T3N0) or LA disease suitable for neoadjuvant tx	TCHP vs TCHP + atezolizumab vs AC + atezolizumab → TCHP + atezolizumab	EFS
DESTINY-11 ³		Neoadjuvant; T04, N1-3, M0 or ≥ T3, N0, M0	T-DXd ± THP vs ddAC-THP	pCR
DESTINY-05 ⁴	Ш	Adjuvant; patients with residual disease after neoadjuvant therapy	T-DXd vs T-DM1	IDFS
Astefania⁵	111	Adjuvant; patients with residual disease after neoadjuvant therapy	Atezolizumab + T-DM1 vs placebo + T-DM1	IDFS
NCT04886531 ⁶	II	Neoadjuvant; triple-positive stage I-III	Neratinib plus ET and trastuzumab	pCR

1. NCT03726879. 2. NCT03595592. 3. NCT05113251. 4. NCT04622319. 5. NCT04873362. 6. NCT04886531.

Corso di Aggiornamento per Operatori dei Registri Tumori

Aggiornamento sui Tumori Mammari Il punto di vista dell'oncologo Vincenzo Adamo Coordinatore Rete Oncologica Siciliana

Grazie per l'attenzione